Matching Items (60)
151905-Thumbnail Image.png
Description
This study looked at ways of understanding how schoolyards might act as meaningful places in children's developing sense of identity and possibility. Photographs and other images such as historical photographs and maps were used to look at how built environments outside of school reflect demographic and social differences within one

This study looked at ways of understanding how schoolyards might act as meaningful places in children's developing sense of identity and possibility. Photographs and other images such as historical photographs and maps were used to look at how built environments outside of school reflect demographic and social differences within one southwest city. Intersections of children's worlds with various socio-political communities, woven into and through schooling, were examined for evidence of ways that schools act as the embodiment of a community's values: they are the material and observable effects of resource-allocation decisions. And scholarly materials were consulted to examine relationships in the images to existing theories of place, and its effect on children, as well as to consider theories of the hidden curriculum and its relationship to social reproduction, and the nature of visual representation as a form of data rather than strictly in the service of illustrating other forms of data. The focus of the study was on identifying appropriate research methods for investigating ways to understand the importance of the material worlds of school and childhood. Using a combination of visual and narrative approaches to contribute to our understanding of those material worlds, I sought to expose areas of inequity and class differences in ways that children experience schooling, as evidenced by differences in the material environment. Using a mixed-methods approach, created and found images were coded for categories of material culture, such as the existence of fences, trees, views from the playground or walking in the neighborhood at four Tempe schools. Findings were connected to a rich body of knowledge in areas such as theories of space and place, the nature of the hidden curriculum, visual culture, visual research methods including mapping. Familiar aspects of schooling were exposed in different ways, linking past decisions made by adults to their continuing effects on children today. In this way I arrived at an expanded and enriched understanding of the present worlds of children communicated as through the material environment. Visually examining children's worlds, by looking at the material artifacts of everyday worlds that children experience at school and including the child's-eye view in decision processes, has promise in moving decision makers away from strictly analytical and impersonal approaches to decision making about schooling children of the future. I proposed that by weighting of data points, as used in decision-making processes regarding schooling, differently than is currently done, and by paying closer attention to possible longer-term effects of place for all children, not just a few, there is the potential to improve the quality of life for today's children, and tomorrow's adults.
ContributorsWalsum, Joyce Van (Author) / Margolis, Eric M. (Thesis advisor) / Green, Samuel (Thesis advisor) / Collins, Daniel (Committee member) / Arizona State University (Publisher)
Created2013
152945-Thumbnail Image.png
Description
Human experience exists within space; it is the studio for the stories of our lives. Bounded by time, location and personal experience we assign our own meanings and feelings to them, and they become personal, symbolic places: some are unique to us, imagined places where we act out stories

Human experience exists within space; it is the studio for the stories of our lives. Bounded by time, location and personal experience we assign our own meanings and feelings to them, and they become personal, symbolic places: some are unique to us, imagined places where we act out stories or dreams; most are part of the natural world.

Most spaces, though, are built or controlled by others; these constructed environments can become places where we may, or may not, like to be.

This research examined spaces and places of children's lives through the material worlds of their neighborhoods and schools, focusing on the visible environment outside of the school building. The intersection of school and community, it is a material embodiment of, and evidence toward, how a community's resources are apportioned to

important aspects of children's developmental years. These visible representations speak of that society's values and goals for the children for whom they (we) are responsible.

This examination used multiple research tools, primarily using visual approaches such as current photographs, archival images and data, descriptive census materials and maps. Historical documents, (many of which are now digitized), as well as other academic literature, local journalistic efforts and school district publications added important materials for analysis.

Findings lead to deeper understanding of ways that visible, material worlds of schools and neighborhoods -- past and present - can reflect, and direct the experiences of childhood today, and often mirror those of children past. These visual and narrative approaches contributed to understanding the importance of material evidence in revealing

inequity and class differences in ways that children, then, must &ldquodo school &rdquo
Contributorsvan Walsum, Joyce I. (Author) / Margolis, Eric M. (Thesis advisor) / Moore, Elsie (Thesis advisor) / Collins, Daniel (Committee member) / Arizona State University (Publisher)
Created2014
Description
Distant is a Game Design Document describing an original game by the same name. The game was designed around the principle of core aesthetics, where the user experience is defined first and then the game is built from that experience. Distant is an action-exploration game set on a huge megastructure

Distant is a Game Design Document describing an original game by the same name. The game was designed around the principle of core aesthetics, where the user experience is defined first and then the game is built from that experience. Distant is an action-exploration game set on a huge megastructure floating in the atmosphere of Saturn. Players take on the role of HUE, an artificial intelligence trapped in the body of a maintenance robot, as he explores this strange world and uncovers its secrets. Using acrobatic movement abilities, players will solve puzzles, evade enemies, and explore the world from top to bottom. The world, known as the Strobilus Megastructure, is conical in shape, with living quarters and environmental system in the upper sections and factories and resource mining in the lower sections. The game world is split up into 10 major areas and countless minor and connecting areas. Special movement abilities like wall running and anti-gravity allow players to progress further down in the world. These abilities also allow players to solve more complicated puzzles, and to find more difficult to reach items. The story revolves around six artificial intelligences that were created to maintain the station. Many centuries ago, these AI helped humankind maintain their day-to-day lives and helped researchers working on new scientific breakthroughs. This led to the discovery of faster-than-light travel, and humanity left the station and our solar system to explore the cosmos. HUE, the AI in charge of human relations, fell into depression and shut down. Awakening several hundred years in the future, HUE sets out to find the other AI. Along the way he helps them reconnect and discovers the history and secrets of the station. Distant is intended for players looking for three things: A fantastic world full of discovery, a rich, character driven narrative, and challenging acrobatic gameplay. Players of any age or background are recommended to give it a try, but it will require investment and a willingness to improve. Distant is intended to change players, to force them to confront difficulty and different perspectives. Most games involve upgrading a character; Distant is a game that upgrades the player.
ContributorsGarttmeier, Colin Reiser (Author) / Collins, Daniel (Thesis director) / Amresh, Ashish (Committee member) / School of Arts, Media and Engineering (Contributor) / Computing and Informatics Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136495-Thumbnail Image.png
Description
The objective of this project concentrates on the game Defense of the Ancients 2 (Dota 2). In this game, players are constantly striving to improve their skills, which are fueled by the competitive nature of the game. The design influences the community to engage in this interaction as they play

The objective of this project concentrates on the game Defense of the Ancients 2 (Dota 2). In this game, players are constantly striving to improve their skills, which are fueled by the competitive nature of the game. The design influences the community to engage in this interaction as they play the game cooperatively. This thesis illustrates the importance of player interaction in influencing design as well as how imperative design is in affecting player interaction. These two concepts are not separate, but are deeply entwined. Every action performed within a game has to interact with some element of design. Both determine how games become defined as competitive, casual, or creative. Game designers can benefit from this study as it reinforces the basics of developing a game for players to interact with. However, it is impossible to predict exactly how players will react to a designed element. Designers should remember to tailor the game towards their audience, but also react and change the game depending on how players are using the elements of design. In addition, players should continue to push the boundaries of games to help designers adapt their product to their audience. If there is not constant communication between players and designers, games will not be tailored appropriately. Pushing the limits of a game benefits the players as well as the designers to make a more complete game. Designers do not solely create a game for the players. Rather, players design the game for themselves. Keywords: game design, player interaction, affinity space, emergent behavior, Dota 2
ContributorsLarsen, Austin James (Author) / Gee, James Paul (Thesis director) / Holmes, Jeffrey (Committee member) / Kobayashi, Yoshihiro (Committee member) / Barrett, The Honors College (Contributor) / Computing and Informatics Program (Contributor) / School of Arts, Media and Engineering (Contributor)
Created2015-05
136516-Thumbnail Image.png
Description
Bots tamper with social media networks by artificially inflating the popularity of certain topics. In this paper, we define what a bot is, we detail different motivations for bots, we describe previous work in bot detection and observation, and then we perform bot detection of our own. For our bot

Bots tamper with social media networks by artificially inflating the popularity of certain topics. In this paper, we define what a bot is, we detail different motivations for bots, we describe previous work in bot detection and observation, and then we perform bot detection of our own. For our bot detection, we are interested in bots on Twitter that tweet Arabic extremist-like phrases. A testing dataset is collected using the honeypot method, and five different heuristics are measured for their effectiveness in detecting bots. The model underperformed, but we have laid the ground-work for a vastly untapped focus on bot detection: extremist ideal diffusion through bots.
ContributorsKarlsrud, Mark C. (Author) / Liu, Huan (Thesis director) / Morstatter, Fred (Committee member) / Barrett, The Honors College (Contributor) / Computing and Informatics Program (Contributor) / Computer Science and Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2015-05
135817-Thumbnail Image.png
Description
In 2010, two gamma-ray /x-ray bubbles were detected in the center of the Milky Way Galaxy. These bubbles extend symmetrically ≈ 30, 000 light years above and below the Galactic Center, with a width of ≈ 27, 000 light years. These bubbles emit gamma-rays at energies between 1 and 100

In 2010, two gamma-ray /x-ray bubbles were detected in the center of the Milky Way Galaxy. These bubbles extend symmetrically ≈ 30, 000 light years above and below the Galactic Center, with a width of ≈ 27, 000 light years. These bubbles emit gamma-rays at energies between 1 and 100 giga-electronvolts, have approximately uniform surface brightness, and are expanding at ≈ 30, 000 km/s. We believe that these Fermi Bubbles are the result of an astrophysical jet pulse that occurred millions of years ago. Utilizing high-performance computing and Euler’s Gas Dynamics Equations, we hope to find a realistic simulation that will tell us more about the age of these Fermi Bubbles and better understand the mechanism that powers the bubbles.
ContributorsWagner, Benjamin Leng (Author) / Gardner, Carl (Thesis director) / Jones, Jeremiah (Committee member) / Computing and Informatics Program (Contributor) / Department of Information Systems (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136153-Thumbnail Image.png
Description
Along with the number of technologies that have been introduced over a few years ago, gesture-based human-computer interactions are becoming the new phase in encompassing the creativity and abilities for users to communicate and interact with devices. Because of how the nature of defining free-space gestures influence user's preference and

Along with the number of technologies that have been introduced over a few years ago, gesture-based human-computer interactions are becoming the new phase in encompassing the creativity and abilities for users to communicate and interact with devices. Because of how the nature of defining free-space gestures influence user's preference and the length of usability of gesture-driven devices, defined low-stress and intuitive gestures for users to interact with gesture recognition systems are necessary to consider. To measure stress, a Galvanic Skin Response instrument was used as a primary indicator, which provided evidence of the relationship between stress and intuitive gestures, as well as user preferences towards certain tasks and gestures during performance. Fifteen participants engaged in creating and performing their own gestures for specified tasks that would be required during the use of free-space gesture-driven devices. The tasks include "activation of the display," scroll, page, selection, undo, and "return to main menu." They were also asked to repeat their gestures for around ten seconds each, which would give them time and further insight of how their gestures would be appropriate or not for them and any given task. Surveys were given at different time to the users: one after they had defined their gestures and another after they had repeated their gestures. In the surveys, they ranked their gestures based on comfort, intuition, and the ease of communication. Out of those user-ranked gestures, health-efficient gestures, given that the participants' rankings were based on comfort and intuition, were chosen in regards to the highest ranked gestures.
ContributorsLam, Christine (Author) / Walker, Erin (Thesis director) / Danielescu, Andreea (Committee member) / Barrett, The Honors College (Contributor) / Ira A. Fulton School of Engineering (Contributor) / School of Arts, Media and Engineering (Contributor) / Department of English (Contributor) / Computing and Informatics Program (Contributor)
Created2015-05
133848-Thumbnail Image.png
Description
This project serves as an extra learning tool for students enrolled in HEB 101 (Hebrew) at Arizona State University. This tool was developed using Axure Prototyping Software and can be used by anyone. The tool follows the HEB 101 course curriculum which also works alongside the textbook for the class

This project serves as an extra learning tool for students enrolled in HEB 101 (Hebrew) at Arizona State University. This tool was developed using Axure Prototyping Software and can be used by anyone. The tool follows the HEB 101 course curriculum which also works alongside the textbook for the class (Hebrew From Scratch part 1). The tool fully covers the seven units that students learn in HEB 101. Each unit follows a standard structure. There is a unit title page which lays out the major concepts covered in the unit (i.e. personal pronouns, question words, prepositions, etc.) and links to different pages within the unit. Each unit has seven to ten lesson pages which introduce Hebrew concepts and provide exercises and examples to help the students practice the material they learned both in class and in the tool. Each unit also has links to Quizlet pages that have the units' vocab set up in a flashcard format so that they can study for upcoming quizzes and exams in the class. The Quizlet page for each unit also provides a randomly generated vocab quiz for the students. There is also a unit quiz for every unit which tests the students on the major concepts of the unit. There are also unit vocab pages that provide all the vocab covered in the unit. This tool provides students with numerous ways of practicing and mastering the material covered in the lectures. The main benefit of this tool for students is that it provides audio files for each vocabulary word learned in HEB 101 which will allow them to have quick access to the pronunciation of the words they are learning. This tool will be used in future HEB 101 classes.
ContributorsOsuna, Esteban Rene (Author) / Shemer, Judith (Thesis director) / Mirguet, Francoise (Committee member) / Computing and Informatics Program (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137137-Thumbnail Image.png
Description
Speech recognition in games is rarely seen. This work presents a project, a 2D computer game named "The Emblems" which utilizes speech recognition as input. The game itself is a two person strategy game whose goal is to defeat the opposing player's army. This report focuses on the speech-recognition aspect

Speech recognition in games is rarely seen. This work presents a project, a 2D computer game named "The Emblems" which utilizes speech recognition as input. The game itself is a two person strategy game whose goal is to defeat the opposing player's army. This report focuses on the speech-recognition aspect of the project. The players interact on a turn-by-turn basis by speaking commands into the computer's microphone. When the computer recognizes a command, it will respond accordingly by having the player's unit perform an action on screen.
ContributorsNguyen, Jordan Ngoc (Author) / Kobayashi, Yoshihiro (Thesis director) / Maciejewski, Ross (Committee member) / Barrett, The Honors College (Contributor) / Computing and Informatics Program (Contributor) / Computer Science and Engineering Program (Contributor)
Created2014-05
137143-Thumbnail Image.png
Description
Methane (CH4) is very important in the environment as it is a greenhouse gas and important for the degradation of organic matter. During the last 200 years the atmospheric concentration of CH4 has tripled. Methanogens are methane-producing microbes from the Archaea domain that complete the final step in breaking down

Methane (CH4) is very important in the environment as it is a greenhouse gas and important for the degradation of organic matter. During the last 200 years the atmospheric concentration of CH4 has tripled. Methanogens are methane-producing microbes from the Archaea domain that complete the final step in breaking down organic matter to generate methane through a process called methanogenesis. They contribute to about 74% of the CH4 present on the Earth's atmosphere, producing 1 billion tons of methane annually. The purpose of this work is to generate a preliminary metabolic reconstruction model of two methanogens: Methanoregula boonei 6A8 and Methanosphaerula palustris E1-9c. M. boonei and M. palustris are part of the Methanomicrobiales order and perform hydrogenotrophic methanogenesis, which means that they reduce CO2 to CH4 by using H2 as their major electron donor. Metabolic models are frameworks for understanding a cell as a system and they provide the means to assess the changes in gene regulation in response in various environmental and physiological constraints. The Pathway-Tools software v16 was used to generate these draft models. The models were manually curated using literature searches, the KEGG database and homology methods with the Methanosarcina acetivorans strain, the closest methanogen strain with a nearly complete metabolic reconstruction. These preliminary models attempt to complete the pathways required for amino acid biosynthesis, methanogenesis, and major cofactors related to methanogenesis. The M. boonei reconstruction currently includes 99 pathways and has 82% of its reactions completed, while the M. palustris reconstruction includes 102 pathways and has 89% of its reactions completed.
ContributorsMahendra, Divya (Author) / Cadillo-Quiroz, Hinsby (Thesis director) / Wang, Xuan (Committee member) / Stout, Valerie (Committee member) / Barrett, The Honors College (Contributor) / Computing and Informatics Program (Contributor) / School of Life Sciences (Contributor) / Biomedical Informatics Program (Contributor)
Created2014-05