Matching Items (117)
150231-Thumbnail Image.png
Description
In this thesis I introduce a new direction to computing using nonlinear chaotic dynamics. The main idea is rich dynamics of a chaotic system enables us to (1) build better computers that have a flexible instruction set, and (2) carry out computation that conventional computers are not good at it.

In this thesis I introduce a new direction to computing using nonlinear chaotic dynamics. The main idea is rich dynamics of a chaotic system enables us to (1) build better computers that have a flexible instruction set, and (2) carry out computation that conventional computers are not good at it. Here I start from the theory, explaining how one can build a computing logic block using a chaotic system, and then I introduce a new theoretical analysis for chaos computing. Specifically, I demonstrate how unstable periodic orbits and a model based on them explains and predicts how and how well a chaotic system can do computation. Furthermore, since unstable periodic orbits and their stability measures in terms of eigenvalues are extractable from experimental times series, I develop a time series technique for modeling and predicting chaos computing from a given time series of a chaotic system. After building a theoretical framework for chaos computing I proceed to architecture of these chaos-computing blocks to build a sophisticated computing system out of them. I describe how one can arrange and organize these chaos-based blocks to build a computer. I propose a brand new computer architecture using chaos computing, which shifts the limits of conventional computers by introducing flexible instruction set. Our new chaos based computer has a flexible instruction set, meaning that the user can load its desired instruction set to the computer to reconfigure the computer to be an implementation for the desired instruction set. Apart from direct application of chaos theory in generic computation, the application of chaos theory to speech processing is explained and a novel application for chaos theory in speech coding and synthesizing is introduced. More specifically it is demonstrated how a chaotic system can model the natural turbulent flow of the air in the human speech production system and how chaotic orbits can be used to excite a vocal tract model. Also as another approach to build computing system based on nonlinear system, the idea of Logical Stochastic Resonance is studied and adapted to an autoregulatory gene network in the bacteriophage λ.
ContributorsKia, Behnam (Author) / Ditto, William (Thesis advisor) / Huang, Liang (Committee member) / Lai, Ying-Cheng (Committee member) / Helms Tillery, Stephen (Committee member) / Arizona State University (Publisher)
Created2011
151230-Thumbnail Image.png
Description
What can classical chaos do to quantum systems is a fundamental issue highly relevant to a number of branches in physics. The field of quantum chaos has been active for three decades, where the focus was on non-relativistic quantumsystems described by the Schr¨odinger equation. By developing an efficient method to

What can classical chaos do to quantum systems is a fundamental issue highly relevant to a number of branches in physics. The field of quantum chaos has been active for three decades, where the focus was on non-relativistic quantumsystems described by the Schr¨odinger equation. By developing an efficient method to solve the Dirac equation in the setting where relativistic particles can tunnel between two symmetric cavities through a potential barrier, chaotic cavities are found to suppress the spread in the tunneling rate. Tunneling rate for any given energy assumes a wide range that increases with the energy for integrable classical dynamics. However, for chaotic underlying dynamics, the spread is greatly reduced. A remarkable feature, which is a consequence of Klein tunneling, arise only in relativistc quantum systems that substantial tunneling exists even for particle energy approaching zero. Similar results are found in graphene tunneling devices, implying high relevance of relativistic quantum chaos to the development of such devices. Wave propagation through random media occurs in many physical systems, where interesting phenomena such as branched, fracal-like wave patterns can arise. The generic origin of these wave structures is currently a matter of active debate. It is of fundamental interest to develop a minimal, paradigmaticmodel that can generate robust branched wave structures. In so doing, a general observation in all situations where branched structures emerge is non-Gaussian statistics of wave intensity with an algebraic tail in the probability density function. Thus, a universal algebraic wave-intensity distribution becomes the criterion for the validity of any minimal model of branched wave patterns. Coexistence of competing species in spatially extended ecosystems is key to biodiversity in nature. Understanding the dynamical mechanisms of coexistence is a fundamental problem of continuous interest not only in evolutionary biology but also in nonlinear science. A continuous model is proposed for cyclically competing species and the effect of the interplay between the interaction range and mobility on coexistence is investigated. A transition from coexistence to extinction is uncovered with a non-monotonic behavior in the coexistence probability and switches between spiral and plane-wave patterns arise. Strong mobility can either promote or hamper coexistence, while absent in lattice-based models, can be explained in terms of nonlinear partial differential equations.
ContributorsNi, Xuan (Author) / Lai, Ying-Cheng (Thesis advisor) / Huang, Liang (Committee member) / Yu, Hongbin (Committee member) / Akis, Richard (Committee member) / Arizona State University (Publisher)
Created2012
150551-Thumbnail Image.png
Description
Complex dynamical systems consisting interacting dynamical units are ubiquitous in nature and society. Predicting and reconstructing nonlinear dynamics of units and the complex interacting networks among them serves the base for the understanding of a variety of collective dynamical phenomena. I present a general method to address the two outstanding

Complex dynamical systems consisting interacting dynamical units are ubiquitous in nature and society. Predicting and reconstructing nonlinear dynamics of units and the complex interacting networks among them serves the base for the understanding of a variety of collective dynamical phenomena. I present a general method to address the two outstanding problems as a whole based solely on time-series measurements. The method is implemented by incorporating compressive sensing approach that enables an accurate reconstruction of complex dynamical systems in terms of both nodal equations that determines the self-dynamics of units and detailed coupling patterns among units. The representative advantages of the approach are (i) the sparse data requirement which allows for a successful reconstruction from limited measurements, and (ii) general applicability to identical and nonidentical nodal dynamics, and to networks with arbitrary interacting structure, strength and sizes. Another two challenging problem of significant interest in nonlinear dynamics: (i) predicting catastrophes in nonlinear dynamical systems in advance of their occurrences and (ii) predicting the future state for time-varying nonlinear dynamical systems, can be formulated and solved in the framework of compressive sensing using only limited measurements. Once the network structure can be inferred, the dynamics behavior on them can be investigated, for example optimize information spreading dynamics, suppress cascading dynamics and traffic congestion, enhance synchronization, game dynamics, etc. The results can yield insights to control strategies design in the real-world social and natural systems. Since 2004, there has been a tremendous amount of interest in graphene. The most amazing feature of graphene is that there exists linear energy-momentum relationship when energy is low. The quasi-particles inside the system can be treated as chiral, massless Dirac fermions obeying relativistic quantum mechanics. Therefore, the graphene provides one perfect test bed to investigate relativistic quantum phenomena, such as relativistic quantum chaotic scattering and abnormal electron paths induced by klein tunneling. This phenomenon has profound implications to the development of graphene based devices that require stable electronic properties.
ContributorsYang, Rui (Author) / Lai, Ying-Cheng (Thesis advisor) / Duman, Tolga M. (Committee member) / Akis, Richard (Committee member) / Huang, Liang (Committee member) / Arizona State University (Publisher)
Created2012
154137-Thumbnail Image.png
Description
The purpose of information source detection problem (or called rumor source detection) is to identify the source of information diffusion in networks based on available observations like the states of the nodes and the timestamps at which nodes adopted the information (or called infected). The solution of the problem can

The purpose of information source detection problem (or called rumor source detection) is to identify the source of information diffusion in networks based on available observations like the states of the nodes and the timestamps at which nodes adopted the information (or called infected). The solution of the problem can be used to answer a wide range of important questions in epidemiology, computer network security, etc. This dissertation studies the fundamental theory and the design of efficient and robust algorithms for the information source detection problem.

For tree networks, the maximum a posterior (MAP) estimator of the information source is derived under the independent cascades (IC) model with a complete snapshot and a Short-Fat Tree (SFT) algorithm is proposed for general networks based on the MAP estimator. Furthermore, the following possibility and impossibility results are established on the Erdos-Renyi (ER) random graph: $(i)$ when the infection duration $<\frac{2}{3}t_u,$ SFT identifies the source with probability one asymptotically, where $t_u=\left\lceil\frac{\log n}{\log \mu}\right\rceil+2$ and $\mu$ is the average node degree, $(ii)$ when the infection duration $>t_u,$ the probability of identifying the source approaches zero asymptotically under any algorithm; and $(iii)$ when infection duration $
In practice, other than the nodes' states, side information like partial timestamps may also be available. Such information provides important insights of the diffusion process. To utilize the partial timestamps, the information source detection problem is formulated as a ranking problem on graphs and two ranking algorithms, cost-based ranking (CR) and tree-based ranking (TR), are proposed. Extensive experimental evaluations of synthetic data of different diffusion models and real world data demonstrate the effectiveness and robustness of CR and TR compared with existing algorithms.
ContributorsZhu, Kai (Author) / Ying, Lei (Thesis advisor) / Lai, Ying-Cheng (Committee member) / Liu, Huan (Committee member) / Shakarian, Paulo (Committee member) / Arizona State University (Publisher)
Created2015
156107-Thumbnail Image.png
Description
Online social media is popular due to its real-time nature, extensive connectivity and a large user base. This motivates users to employ social media for seeking information by reaching out to their large number of social connections. Information seeking can manifest in the form of requests for personal and time-critical

Online social media is popular due to its real-time nature, extensive connectivity and a large user base. This motivates users to employ social media for seeking information by reaching out to their large number of social connections. Information seeking can manifest in the form of requests for personal and time-critical information or gathering perspectives on important issues. Social media platforms are not designed for resource seeking and experience large volumes of messages, leading to requests not being fulfilled satisfactorily. Designing frameworks to facilitate efficient information seeking in social media will help users to obtain appropriate assistance for their needs

and help platforms to increase user satisfaction.

Several challenges exist in the way of facilitating information seeking in social media. First, the characteristics affecting the user’s response time for a question are not known, making it hard to identify prompt responders. Second, the social context in which the user has asked the question has to be determined to find personalized responders. Third, users employ rhetorical requests, which are statements having the

syntax of questions, and systems assisting information seeking might be hindered from focusing on genuine questions. Fouth, social media advocates of political campaigns employ nuanced strategies to prevent users from obtaining balanced perspectives on

issues of public importance.

Sociological and linguistic studies on user behavior while making or responding to information seeking requests provides concepts drawing from which we can address these challenges. We propose methods to estimate the response time of the user for a given question to identify prompt responders. We compute the question specific social context an asker shares with his social connections to identify personalized responders. We draw from theories of political mobilization to model the behaviors arising from the strategies of people trying to skew perspectives. We identify rhetorical questions by modeling user motivations to post them.
ContributorsRanganath, Suhas (Author) / Liu, Huan (Thesis advisor) / Lai, Ying-Cheng (Thesis advisor) / Tong, Hanghang (Committee member) / Vaculin, Roman (Committee member) / Arizona State University (Publisher)
Created2017
155919-Thumbnail Image.png
Description
This dissertation treats a number of related problems in control and data analysis of complex networks.

First, in existing linear controllability frameworks, the ability to steer a network from any initiate state toward any desired state is measured by the minimum number of driver nodes. However, the associated optimal control energy

This dissertation treats a number of related problems in control and data analysis of complex networks.

First, in existing linear controllability frameworks, the ability to steer a network from any initiate state toward any desired state is measured by the minimum number of driver nodes. However, the associated optimal control energy can become unbearably large, preventing actual control from being realized. Here I develop a physical controllability framework and propose strategies to turn physically uncontrollable networks into physically controllable ones. I also discover that although full control can be guaranteed by the prevailing structural controllability theory, it is necessary to balance the number of driver nodes and control energy to achieve actual control, and my work provides a framework to address this issue.

Second, in spite of recent progresses in linear controllability, controlling nonlinear dynamical networks remains an outstanding problem. Here I develop an experimentally feasible control framework for nonlinear dynamical networks that exhibit multistability. The control objective is to apply parameter perturbation to drive the system from one attractor to another. I introduce the concept of attractor network and formulate a quantifiable framework: a network is more controllable if the attractor network is more strongly connected. I test the control framework using examples from various models and demonstrate the beneficial role of noise in facilitating control.

Third, I analyze large data sets from a diverse online social networking (OSN) systems and find that the growth dynamics of meme popularity exhibit characteristically different behaviors: linear, “S”-shape and exponential growths. Inspired by cell population growth model in microbial ecology, I construct a base growth model for meme popularity in OSNs. Then I incorporate human interest dynamics into the base model and propose a hybrid model which contains a small number of free parameters. The model successfully predicts the various distinct meme growth dynamics.

At last, I propose a nonlinear dynamics model to characterize the controlling of WNT signaling pathway in the differentiation of neural progenitor cells. The model is able to predict experiment results and shed light on the understanding of WNT regulation mechanisms.
ContributorsWang, Lezhi (Author) / Lai, Ying-Cheng (Thesis advisor) / Wang, Xiao (Thesis advisor) / Papandreoou-Suppappola, Antonia (Committee member) / Brafman, David (Committee member) / Arizona State University (Publisher)
Created2017
156457-Thumbnail Image.png
Description
Resilience is emerging as the preferred way to improve the protection of infrastructure systems beyond established risk management practices. Massive damages experienced during tragedies like Hurricane Katrina showed that risk analysis is incapable to prevent unforeseen infrastructure failures and shifted expert focus towards resilience to absorb and recover from adverse

Resilience is emerging as the preferred way to improve the protection of infrastructure systems beyond established risk management practices. Massive damages experienced during tragedies like Hurricane Katrina showed that risk analysis is incapable to prevent unforeseen infrastructure failures and shifted expert focus towards resilience to absorb and recover from adverse events. Recent, exponential growth in research is now producing consensus on how to think about infrastructure resilience centered on definitions and models from influential organizations like the US National Academy of Sciences. Despite widespread efforts, massive infrastructure failures in 2017 demonstrate that resilience is still not working, raising the question: Are the ways people think about resilience producing resilient infrastructure systems?



This dissertation argues that established thinking harbors misconceptions about infrastructure systems that diminish attempts to improve their resilience. Widespread efforts based on the current canon focus on improving data analytics, establishing resilience goals, reducing failure probabilities, and measuring cascading losses. Unfortunately, none of these pursuits change the resilience of an infrastructure system, because none of them result in knowledge about how data is used, goals are set, or failures occur. Through the examination of each misconception, this dissertation results in practical, new approaches for infrastructure systems to respond to unforeseen failures via sensing, adapting, and anticipating processes. Specifically, infrastructure resilience is improved by sensing when data analytics include the modeler-in-the-loop, adapting to stress contexts by switching between multiple resilience strategies, and anticipating crisis coordination activities prior to experiencing a failure.

Overall, results demonstrate that current resilience thinking needs to change because it does not differentiate resilience from risk. The majority of research thinks resilience is a property that a system has, like a noun, when resilience is really an action a system does, like a verb. Treating resilience as a noun only strengthens commitment to risk-based practices that do not protect infrastructure from unknown events. Instead, switching to thinking about resilience as a verb overcomes prevalent misconceptions about data, goals, systems, and failures, and may bring a necessary, radical change to the way infrastructure is protected in the future.
ContributorsEisenberg, Daniel Alexander (Author) / Seager, Thomas P. (Thesis advisor) / Park, Jeryang (Thesis advisor) / Alderson, David L. (Committee member) / Lai, Ying-Cheng (Committee member) / Arizona State University (Publisher)
Created2018
135200-Thumbnail Image.png
Description
Netflix has positioned itself at the forefront of the future of television with its original programming, which has been rolled out in greater and more frequent amounts just in the last couple of years. The streaming service has already experimented with creativity in ways most other shows and creators haven't,

Netflix has positioned itself at the forefront of the future of television with its original programming, which has been rolled out in greater and more frequent amounts just in the last couple of years. The streaming service has already experimented with creativity in ways most other shows and creators haven't, playing with the pacing of overall seasons as well as the length of episodes. So, too, Netflix has been at the forefront of increasing visibility for minority characters on television. Many of its shows incorporate racially diverse casts and depict lots of LGBTQ characters, a refreshingly realistic view of the world that many of its viewers have always lived in but haven't yet witnessed on television. Visibility and representation are critical concepts for analyzing minority characters on television. It is important for diverse characters to be seen, first and foremost, but also to be seen in positive or at least realistic lights. Care must be taken to avoid fulfilling stereotypes or tropes, and attention must be paid to what has happened to other characters who have come before. However, many of Netflix's portrayals of these characters, particularly bisexual characters, leave much to be desired. With the original dramas House of Cards, Hemlock Grove, Orange is the New Black, and Sense8, all of which include characters who identify as or behave bisexually, Netflix has been reluctant to use the specific word bisexual to describe characters, and many don't even identify their sexuality with a synonym for the term. Many of the bisexual characters that I identified died or were killed on the shows, and nearly all of them fulfilled stereotypes or tropes in some way. There were multiple scenes of threesomes or other distinctly kinky sexual encounters, which served to exoticize bisexuality and distance it from the more normatively viewed identities of heterosexuality and homosexuality. Ultimately, while Netflix's original programming has offered increased visibility to bisexual characters, it has yet to reflect the real community it seeks to portray. In particular, Netflix's refusal to label characters as bisexual is frustrating and limiting. It can be argued that this is a progressive move toward more ideas of sexual fluidity and a post-modern lack of sexual labels, but there are not enough depictions of identified bisexual characters on television yet for this to make sense. Until bisexual characters and their identities are not invisibilized or stigmatized, more work has to be done to ensure that bisexual people are represented fairly and accurately on television and in all media.
Created2016-05
135342-Thumbnail Image.png
Description
Arizona and Florida are unique venues are they are the only two locations in the world to host the preseason leagues known as Spring Training for all thirty Major League Baseball teams. With fan bases willing to travel and spend disposable income to follow their favorite teams and/or escape the

Arizona and Florida are unique venues are they are the only two locations in the world to host the preseason leagues known as Spring Training for all thirty Major League Baseball teams. With fan bases willing to travel and spend disposable income to follow their favorite teams and/or escape the cold spells of their home state, the sports and tourism industries in Arizona and Florida have been able to captivate a status as top spring destinations. This study takes a focus on the economic impact that Spring Training in March has on the state of Arizona; specifically the Phoenix Metropolitan area. Consumer research is presented and a SWOT analysis is generated to further assess the condition of the Cactus League and Arizona as a host state. An economic impact study driven by the Strengths, Weaknesses, Opportunities & Threats (SWOT) analysis method is the primary focuses of research due to the sum and quality of usable data that can be organized using the SWOT structure. The scope of this research aims to support the argument that Spring Training impacts the host city in which it resides in. In conjunction with the SWOT analysis, third parties will be able to get a sense of the overall effectiveness and impact of Cactus League Spring Training in the Valley of the Sun. Integration of findings from a Tampa Bay sight visit will also be assessed to determine the health of the competition. This study will take an interdisciplinary approach as it views the topics at hand from the lenses of the consumer, baseball professional, and investor.
ContributorsOlden, Kyle (Co-author) / Farmer, James (Co-author) / Eaton, John (Thesis director) / Mokwa, Michael (Committee member) / T. Denny Sanford School of Social and Family Dynamics (Contributor) / College of Public Service and Community Solutions (Contributor) / Department of Information Systems (Contributor) / Department of Economics (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135447-Thumbnail Image.png
Description
This study investigates how the patient-provider relationship between lesbian, gay, and bisexual women and their healthcare providers influences their access to, utilization of, and experiences within healthcare environments. Nineteen participants, ages 18 to 34, were recruited using convenience and snowball sampling. Interviews were conducted inquiring about their health history and

This study investigates how the patient-provider relationship between lesbian, gay, and bisexual women and their healthcare providers influences their access to, utilization of, and experiences within healthcare environments. Nineteen participants, ages 18 to 34, were recruited using convenience and snowball sampling. Interviews were conducted inquiring about their health history and their experiences within the healthcare system in the context of their sexual orientation. The data collected from these interviews was used to create an analysis of the healthcare experiences of those who identify as queer. Although the original intention of the project was to chronicle the experiences of LGB women specifically, there were four non-binary gender respondents who contributed interviews. In an effort to not privilege any orientation over another, the respondents were collectively referred to as queer, given the inclusive and an encompassing nature of the term. The general conclusion of this study is that respondents most often experienced heterosexism rather than outright homophobia when accessing healthcare. If heterosexism was present within the healthcare setting, it made respondents feel uncomfortable with their providers and less likely to inform them of their sexuality even if it was medically relevant to their health outcomes. Gender, race, and,socioeconomic differences also had an effect on the patient-provider relationship. Non-binary respondents acknowledged the need for inclusion of more gender options outside of male or female on the reporting forms often seen in medical offices. By doing so, medical professionals are acknowledging their awareness and knowledge of people outside of the binary gender system, thus improving the experience of these patients. While race and socioeconomic status were less relevant to the context of this study, it was found that these factors have an affect on the patient-provider relationship. There are many suggestions for providers to improve the experiences of queer patients within the healthcare setting. This includes nonverbal indications of acknowledgement and acceptance, such as signs in the office that indicate it to be a queer friendly space. This will help in eliminating the fear and miscommunication that can often happen when a queer patient sees a practitioner for the first time. In addition, better education on medically relevant topics to queer patients, is necessary in order to eliminate disparities in health outcomes. This is particularly evident in trans health, where specialized education is necessary in order to decrease poor health outcomes in trans patients. Future directions of this study necessitate a closer look on how race and socioeconomic status have an effect on a queer patient's relationship with their provider.
Created2016-05