Matching Items (1,020)
Filtering by

Clear all filters

150400-Thumbnail Image.png
Description
Semiconductor nanowires are featured by their unique one-dimensional structure which makes them promising for small scale electronic and photonic device applications. Among them, III-V material nanowires are particularly outstanding due to their good electronic properties. In bulk, these materials reveal electron mobility much higher than conventional silicon based devices, for

Semiconductor nanowires are featured by their unique one-dimensional structure which makes them promising for small scale electronic and photonic device applications. Among them, III-V material nanowires are particularly outstanding due to their good electronic properties. In bulk, these materials reveal electron mobility much higher than conventional silicon based devices, for example at room temperature, InAs field effect transistor (FET) has electron mobility of 40,000 cm2/Vs more than 10 times of Si FET. This makes such materials promising for high speed nanowire FETs. With small bandgap, such as 0.354 eV for InAs and 1.52 eV for GaAs, it does not need high voltage to turn on such devices which leads to low power consumption devices. Another feature of direct bandgap allows their applications of optoelectronic devices such as avalanche photodiodes. However, there are challenges to face up. Due to their large surface to volume ratio, nanowire devices typically are strongly affected by the surface states. Although nanowires can be grown into single crystal structure, people observe crystal defects along the wires which can significantly affect the performance of devices. In this work, FETs made of two types of III-V nanowire, GaAs and InAs, are demonstrated. These nanowires are grown by catalyst-free MOCVD growth method. Vertically nanowires are transferred onto patterned substrates for coordinate calibration. Then electrodes are defined by e-beam lithography followed by deposition of contact metals. Prior to metal deposition, however, the substrates are dipped in ammonium hydroxide solution to remove native oxide layer formed on nanowire surface. Current vs. source-drain voltage with different gate bias are measured at room temperature. GaAs nanowire FETs show photo response while InAs nanowire FETs do not show that. Surface passivation is performed on GaAs FETs by using ammonium surfide solution. The best results on current increase is observed with around 20-30 minutes chemical treatment time. Gate response measurements are performed at room temperature, from which field effect mobility as high as 1490 cm2/Vs is extracted for InAs FETs. One major contributor for this is stacking faults defect existing along nanowires. For InAs FETs, thermal excitations observed from temperature dependent results which leads us to investigate potential barriers.
ContributorsLiang, Hanshuang (Author) / Yu, Hongbin (Thesis advisor) / Ferry, David (Committee member) / Tracy, Clarence (Committee member) / Arizona State University (Publisher)
Created2011
148115-Thumbnail Image.png
Description

Exploratory Play is a universal experience that occurs throughout different kinds of childhoods. This study investigates how children’s vocabulary and exploratory play are influenced by how the caregiver responds to the child’s communicative bids. We hypothesize that if caregivers use more open-ended questions in response to their child’s communicative bids,

Exploratory Play is a universal experience that occurs throughout different kinds of childhoods. This study investigates how children’s vocabulary and exploratory play are influenced by how the caregiver responds to the child’s communicative bids. We hypothesize that if caregivers use more open-ended questions in response to their child’s communicative bids, children will show higher rates of exploration during free play.

ContributorsMccollum, Shani Monifa (Author) / Lucca, Kelsey (Thesis director) / Spinrad, Tracy (Committee member) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
150090-Thumbnail Image.png
Description
The constructs of compliance and temperament play an important role in children's school liking and engagement, and these constructs may differ between typically-developing children and children with autism because of the deficits associated with autism. The present study examined group differences among temperament, parent and child behaviors in a

The constructs of compliance and temperament play an important role in children's school liking and engagement, and these constructs may differ between typically-developing children and children with autism because of the deficits associated with autism. The present study examined group differences among temperament, parent and child behaviors in a compliance context, and school liking and how these processes related to each other. This was the first study to examine school liking in children with high functioning autism and to explore the associations among school liking, temperament, and compliance in this population. Participants included children with high functioning autism (n = 20) and typically-developing children (n = 20) matched on language and mental age, and their parents. Compliance to a parent was observed in a laboratory setting, and temperament and school liking data were collected using parent-report measures. The findings revealed that children with autism had significantly lower Effortful Control (EC) and school liking scores than typically-developing children. However, there were no group differences in compliance, and no significant relation was found between temperament and compliance. Additionally, school liking scores were related to compliance and EC. These findings are discussed with respect to implications for potential future research and use of interventions for children with high functioning autism.
ContributorsInglese, Crystal (Author) / Jahromi, Laudan B (Thesis advisor) / Spinrad, Tracy (Committee member) / Sullivan, Amanda (Committee member) / Arizona State University (Publisher)
Created2011
137869-Thumbnail Image.png
Description
Meteorology is an uncommon term rarely resonating through elementary classrooms. However, it is a concept found in both fourth and sixth grade Arizona science standards. As issues involving the environment are becoming more pertinent, it is important to study and understand atmospheric processes along with fulfilling the standards for each

Meteorology is an uncommon term rarely resonating through elementary classrooms. However, it is a concept found in both fourth and sixth grade Arizona science standards. As issues involving the environment are becoming more pertinent, it is important to study and understand atmospheric processes along with fulfilling the standards for each grade level. This thesis project teaches the practical skills of weather map reading and weather forecasting through the creation and execution of an after school lesson with the aide of seven teen assistants.
ContributorsChoulet, Shayna (Author) / Walters, Debra (Thesis director) / Oliver, Jill (Committee member) / Balling, Robert (Committee member) / Barrett, The Honors College (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2012-12
137870-Thumbnail Image.png
Description
Plants are essential to human life. They release oxygen into the atmosphere for us to breathe. They also provide shelter, medicine, clothing, tools, and food. For many people, the food that is on their tables and in their supermarkets isn't given much thought. Where did it come from? What part

Plants are essential to human life. They release oxygen into the atmosphere for us to breathe. They also provide shelter, medicine, clothing, tools, and food. For many people, the food that is on their tables and in their supermarkets isn't given much thought. Where did it come from? What part of the plant is it? How does it relate to others in the plant kingdom? How do other cultures use this plant? The most many of us know about them is that they are at the supermarket when we need them for dinner (Nabhan, 2009) (Vileisis, 2008).
ContributorsBarron, Kara (Author) / Landrum, Leslie (Thesis director) / Swanson, Tod (Committee member) / Pigg, Kathleen (Committee member) / Barrett, The Honors College (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2012-12
137871-Thumbnail Image.png
DescriptionBased on previous research and findings it is proven that a non-profit class to create awareness will be beneficial in the prevention of eating disorders. This analysis will provide significant research to defend the proposed class.
ContributorsAllen, Brittany (Author) / Chung, Deborah (Author) / Fey, Richard (Thesis director) / Peck, Sidnee (Committee member) / Mazurkiewicz, Milena (Committee member) / Barrett, The Honors College (Contributor) / W. P. Carey School of Business (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2012-12
Description
Restraint stress is the most commonly used laboratory stressor. It is difficult to characterize as psychological or physical, because past studies show psychological features, but the nature of confinement adds a physical dimension. This was the first study to investigate how experience with restraint stress affects brain response to the

Restraint stress is the most commonly used laboratory stressor. It is difficult to characterize as psychological or physical, because past studies show psychological features, but the nature of confinement adds a physical dimension. This was the first study to investigate how experience with restraint stress affects brain response to the next stress without a physical burden. Pair-housed adult male rats were transported to a novel context and restrained or left undisturbed (6hr). The next day, rats were returned to the same context and were either restrained or left undisturbed in the context (n=8/group). After 90min, rats were euthanized to determine functional activation in limbic structures using Fos immunohistochemistry and to measure HPA axis reactivity through blood serum corticosterone levels. Regardless of day 1 experience, context exposure on day 2 enhanced Fos expression in CA1 and CA3 of the hippocampus, basolateral amygdala, and central amygdala. Conversely, other regions and corticosterone levels demonstrated modulation from the previous day's experience. Specifically, rats that were placed back into the restraint context but not restrained on day 2 showed enhanced Fos expression in the dentate gyrus suprapyramidal blade (DGSup), and infralimbic cortex (IL). Also Fos expression was attenuated in rats that received two restraint exposures in the IL and medial amygdala (MEA), suggesting habituation. Only the DG infrapyramidal blade (DGInf) showed enhanced Fos expression to restraint on day 2 without influence of the previous day. While context predominately directed Fos activation, prior experience with restraint influenced Fos expression in the DGSup, IL, MEA and corticosterone levels to support restraint having psychological components.
ContributorsAnouti, P. Danya (Author) / Conrad, D. Cheryl (Thesis director) / Hammer, Ronald (Committee member) / Hoffman, N. Ann (Committee member) / Barrett, The Honors College (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2012-12
150443-Thumbnail Image.png
Description
ABSTRACT An Ensemble Monte Carlo (EMC) computer code has been developed to simulate, semi-classically, spin-dependent electron transport in quasi two-dimensional (2D) III-V semiconductors. The code accounts for both three-dimensional (3D) and quasi-2D transport, utilizing either 3D or 2D scattering mechanisms, as appropriate. Phonon, alloy, interface roughness, and impurity scattering mechanisms

ABSTRACT An Ensemble Monte Carlo (EMC) computer code has been developed to simulate, semi-classically, spin-dependent electron transport in quasi two-dimensional (2D) III-V semiconductors. The code accounts for both three-dimensional (3D) and quasi-2D transport, utilizing either 3D or 2D scattering mechanisms, as appropriate. Phonon, alloy, interface roughness, and impurity scattering mechanisms are included, accounting for the Pauli Exclusion Principle via a rejection algorithm. The 2D carrier states are calculated via a self-consistent 1D Schrödinger-3D-Poisson solution in which the charge distribution of the 2D carriers in the quantization direction is taken as the spatial distribution of the squared envelope functions within the Hartree approximation. The wavefunctions, subband energies, and 2D scattering rates are updated periodically by solving a series of 1D Schrödinger wave equations (SWE) over the real-space domain of the device at fixed time intervals. The electrostatic potential is updated by periodically solving the 3D Poisson equation. Spin-polarized transport is modeled via a spin density-matrix formalism that accounts for D'yakanov-Perel (DP) scattering. Also, the code allows for the easy inclusion of additional scattering mechanisms and structural modifications to devices. As an application of the simulator, the current voltage characteristics of an InGaAs/InAlAs HEMT are simulated, corresponding to nanoscale III-V HEMTs currently being fabricated by Intel Corporation. The comparative effects of various scattering parameters, material properties and structural attributes are investigated and compared with experiments where reasonable agreement is obtained. The spatial evolution of spin-polarized carriers in prototypical Spin Field Effect Transistor (SpinFET) devices is then simulated. Studies of the spin coherence times in quasi-2D structures is first investigated and compared to experimental results. It is found that the simulated spin coherence times for GaAs structures are in reasonable agreement with experiment. The SpinFET structure studied is a scaled-down version of the InGaAs/InAlAs HEMT discussed in this work, in which spin-polarized carriers are injected at the source, and the coherence length is studied as a function of gate voltage via the Rashba effect.
ContributorsTierney, Brian David (Author) / Goodnick, Stephen (Thesis advisor) / Ferry, David (Committee member) / Akis, Richard (Committee member) / Saraniti, Marco (Committee member) / Vasileska, Dragica (Committee member) / Arizona State University (Publisher)
Created2011
150446-Thumbnail Image.png
Description
The main objective of this study was to use a genetically-informative design to examine the putative influences of maternal perceived prenatal stress, obstetrical complications, and gestational age on infant dysregulation, competence, and developmental maturity. Specifically, whether or not prenatal and obstetrical environmental conditions modified the heritability of infant outcomes was

The main objective of this study was to use a genetically-informative design to examine the putative influences of maternal perceived prenatal stress, obstetrical complications, and gestational age on infant dysregulation, competence, and developmental maturity. Specifically, whether or not prenatal and obstetrical environmental conditions modified the heritability of infant outcomes was examined. A total of 291 mothers were interviewed when their twin infants were 12 months of age. Pregnancy and twin birth medical records were obtained to code obstetrical data. Utilizing behavioral genetic models, results indicated maternal perceived prenatal stress moderated genetic and environmental influences on developmental maturity whereas obstetrical complications moderated shared environmental influences on infant competence and nonshared environmental influences on developmental maturity. Gestational age moderated the heritability and nonshared environment of infant dysregulation, shared and nonshared environmental influences on competence, and nonshared environmental influences on developmental maturity. Taken together, prenatal and obstetric conditions were important nonlinear influences on infant outcomes. An evolutionary perspective may provide a framework for these findings, such that the prenatal environment programs the fetus to be adaptive to current environmental contexts. Specifically, prenatal stress governs gene expression through epigenetic processes. Findings highlight the utility of a genetically informative design for elucidating the role of prenatal and obstetric conditions in the etiology of infant developmental outcomes.
ContributorsMcDonald, Kristy (Author) / Lemery-Chalfant, Kathryn S (Thesis advisor) / Fabricius, William (Committee member) / Luecken, Linda (Committee member) / Spinrad, Tracy (Committee member) / Arizona State University (Publisher)
Created2011
150549-Thumbnail Image.png
Description
The purpose of this study was to examine whether dispositional sadness predicted children's prosocial behavior, and whether empathy-related responding (i.e., sympathy, personal distress) mediated this relation. It was hypothesized that children who were dispositionally sad, but well-regulated (i.e., moderate to high in effortful control), would experience sympathy versus personal distress,

The purpose of this study was to examine whether dispositional sadness predicted children's prosocial behavior, and whether empathy-related responding (i.e., sympathy, personal distress) mediated this relation. It was hypothesized that children who were dispositionally sad, but well-regulated (i.e., moderate to high in effortful control), would experience sympathy versus personal distress, and thus would engage in more prosocial behaviors than children who were not well-regulated. Constructs were measured across three time points, when children were 18-, 30-, and 42-months old. In addition, early effortful control (at 18 months) was investigated as a potential moderator of the relation between dispositional sadness and empathy-related responding. Separate path models were computed for sadness predicting prosocial behavior with (1) sympathy and (2) personal distress as the mediator. In path analysis, sadness was found to be a positive predictor of sympathy across time. There was not a significant mediated effect of sympathy on the relation between sadness and prosocial behavior (both reported and observed). In path models with personal distress, sadness was not a significant predictor of personal distress, and personal distress was not a significant predictor of prosocial behavior (therefore, mediation analyses were not pursued). The moderated effect of effortful control was significant for the relation between 18-month sadness and 30-month sympathy; contrary to expectation, sadness was a significant, positive predictor of sympathy only for children who had average and low levels of effortful control (children high in effortful control were high in sympathy regardless of level of sadness). There was no significant moderated effect of effortful control on the path from sadness to personal distress. Findings are discussed in terms of the role of sadness in empathy-related responding and prosocial behavior as well as the dual role of effortful control and sadness in predicting empathy-related responding.
ContributorsEdwards, Alison (Author) / Eisenberg, Nancy (Thesis advisor) / Spinrad, Tracy (Committee member) / Reiser, Mark R. (Committee member) / Arizona State University (Publisher)
Created2012