Matching Items (9)
Description

Consider Steven Cryos’ words, “When disaster strikes, the time to prepare has passed.” Witnessing domestic water insecurity in events such as Hurricane Katrina, the instability in Flint, Michigan, and most recently the winter storms affecting millions across Texas, we decided to take action. The period between a water supply’s disruption

Consider Steven Cryos’ words, “When disaster strikes, the time to prepare has passed.” Witnessing domestic water insecurity in events such as Hurricane Katrina, the instability in Flint, Michigan, and most recently the winter storms affecting millions across Texas, we decided to take action. The period between a water supply’s disruption and restoration is filled with anxiety, uncertainty, and distress -- particularly since there is no clear indication of when, exactly, restoration comes. It is for this reason that Water Works now exists. As a team of students from diverse backgrounds, what started as an honors project with the Founders Lab at Arizona State University became the seed that will continue to mature into an economically sustainable business model supporting the optimistic visions and tenants of humanitarianism. By having conversations with community members, conducting market research, competing for funding and fostering progress amid the COVID-19 pandemic, our team’s problem-solving traverses the disciplines. The purpose of this paper is to educate our readers about a unique solution to emerging issues of water insecurity that are nested across and within systems who could benefit from the introduction of a personal water reclamation system, showcase our team’s entrepreneurial journey, and propose future directions that will this once pedagogical exercise to continue fulfilling its mission: To heal, to hydrate and to help bring safe water to everyone.

ContributorsReitzel, Gage Alexander (Co-author) / Filipek, Marina (Co-author) / Sadiasa, Aira (Co-author) / Byrne, Jared (Thesis director) / Sebold, Brent (Committee member) / Historical, Philosophical & Religious Studies (Contributor) / School of Human Evolution & Social Change (Contributor, Contributor) / Historical, Philosophical & Religious Studies, Sch (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148134-Thumbnail Image.png
Description

In the United States, clinical testing is monitored by the federal and state governments, held to standards to ensure the safety and efficacy of these tests, as well as maintaining privacy for patients receiving a test. In order for the ABCTL to lawfully operate in the state of Arizona, it

In the United States, clinical testing is monitored by the federal and state governments, held to standards to ensure the safety and efficacy of these tests, as well as maintaining privacy for patients receiving a test. In order for the ABCTL to lawfully operate in the state of Arizona, it had to meet various legal criteria. These major legal considerations, in no particular order, are: Clinical Laboratory Improvement Amendments compliance; FDA Emergency Use Authorization (EUA); Health Insurance Portability and Accountability Act compliance; state licensure; patient, state, and federal result reporting; and liability. <br/>In this paper, the EUA pathway will be examined and contextualized in relation to the ABCTL. This will include an examination of the FDA regulations and policies that affect the laboratory during its operations, as well as a look at the different authorization pathways for diagnostic tests present during the COVID-19 pandemic.

ContributorsJenkins, Landon James (Co-author) / Espinoza, Hale Anna (Co-author) / Filipek, Marina (Co-author) / Ross, Nathaniel (Co-author) / Salvatierra, Madeline (Co-author) / Compton, Carolyn (Thesis director) / Rigoni, Adam (Committee member) / Stanford, Michael (Committee member) / School of Life Sciences (Contributor) / School of Politics and Global Studies (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Consider Steven Cryos’ words, “When disaster strikes, the time to prepare has passed.” Witnessing domestic water insecurity in events such as Hurricane Katrina, the instability in Flint, Michigan, and most recently the winter storms affecting millions across Texas, we decided to take action. The period between a water supply’s disruption

Consider Steven Cryos’ words, “When disaster strikes, the time to prepare has passed.” Witnessing domestic water insecurity in events such as Hurricane Katrina, the instability in Flint, Michigan, and most recently the winter storms affecting millions across Texas, we decided to take action. The period between a water supply’s disruption and restoration is filled with anxiety, uncertainty, and distress -- particularly since there is no clear indication of when, exactly, restoration comes. It is for this reason that Water Works now exists. As a team of students from diverse backgrounds, what started as an honors project with the Founders Lab at Arizona State University became the seed that will continue to mature into an economically sustainable business model supporting the optimistic visions and tenants of humanitarianism. By having conversations with community members, conducting market research, competing for funding and fostering progress amid the COVID-19 pandemic, our team’s problem-solving traverses the disciplines. The purpose of this paper is to educate our readers about a unique solution to emerging issues of water insecurity that are nested across and within systems who could benefit from the introduction of a personal water reclamation system, showcase our team’s entrepreneurial journey, and propose future directions that will this once pedagogical exercise to continue fulfilling its mission: To heal, to hydrate, and to help bring safe water to everyone.

ContributorsFilipek, Marina (Co-author) / Sadiasa, Aira (Co-author) / Reitzel, Gage (Co-author) / Byrne, Jared (Thesis director) / Sebold, Brent (Committee member) / Department of Finance (Contributor) / School of International Letters and Cultures (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Economics Program in CLAS (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Consider Steven Cryos’ words, “When disaster strikes, the time to prepare has passed.” Witnessing domestic water insecurity in events such as Hurricane Katrina, the instability in Flint, Michigan, and most recently the winter storms affecting millions across Texas, we decided to take action. The period between a water supply’s disruption

Consider Steven Cryos’ words, “When disaster strikes, the time to prepare has passed.” Witnessing domestic water insecurity in events such as Hurricane Katrina, the instability in Flint, Michigan, and most recently the winter storms affecting millions across Texas, we decided to take action. The period between a water supply’s disruption and restoration is filled with anxiety, uncertainty, and distress -- particularly since there is no clear indication of when, exactly, restoration comes. It is for this reason that Water Works now exists. As a team of students from diverse backgrounds, what started as an honors project with the Founders Lab at Arizona State University became the seed that will continue to mature into an economically sustainable business model supporting the optimistic visions and tenants of humanitarianism. By having conversations with community members, conducting market research, competing for funding and fostering progress amid the COVID-19 pandemic, our team’s problem-solving traverses the disciplines. The purpose of this paper is to educate our readers about a unique solution to emerging issues of water insecurity that are nested across and within systems who could benefit from the introduction of a personal water reclamation system, showcase our team’s entrepreneurial journey, and propose future directions that will this once pedagogical exercise to continue fulfilling its mission: To heal, to hydrate and to help bring safe water to everyone.

ContributorsSadiasa, Aira Melice Roa (Co-author) / Filipek, Marina (Co-author) / Reitzel, Gage (Co-author) / Byrne, Jared (Thesis director) / Sebold, Brent (Committee member) / Department of Information Systems (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
163900-Thumbnail Image.png
Description

This Project Report documents the accomplishments of an extraordinary group of students, faculty, and staff at the Arizona state University, who participated in a year-long, multidisciplinary, first-of-its-kind academic endeavor entitled “The Making of a COVID Lab.” The lab that is the focus of this project is the ASU Biodesign Clinical

This Project Report documents the accomplishments of an extraordinary group of students, faculty, and staff at the Arizona state University, who participated in a year-long, multidisciplinary, first-of-its-kind academic endeavor entitled “The Making of a COVID Lab.” The lab that is the focus of this project is the ASU Biodesign Clinical Testing Laboratory, known simply as the ABCTL.

ContributorsCompton, Carolyn C. (Project director) / Christianson, Serena L. (Project director) / Floyd, Christopher (Project director) / Schneller, Eugene S (Research team head) / Rigoni, Adam (Research team head) / Stanford, Michael (Research team head) / Cheong, Pauline (Research team head) / McCarville, Daniel R. (Research team head) / Dudley, Sean (Research team head) / Blum, Nita (Research team head) / Magee, Mitch (Research team head) / Agee, Claire (Research team member) / Cosgrove, Samuel (Research team member) / English, Corinne (Research team member) / Mattson, Kyle (Research team member) / Qian, Michael (Research team member) / Espinoza, Hale Anna (Research team member) / Filipek, Marina (Research team member) / Jenkins, Landon James (Research team member) / Ross, Nathaniel (Research team member) / Salvatierra, Madeline (Research team member) / Serrano, Osvin (Research team member) / Wakefield, Alex (Research team member) / Calo, Van Dexter (Research team member) / Nofi, Matthew (Research team member) / Raymond, Courtney (Research team member) / Barwey, Ishna (Research team member) / Bruner, Ashley (Research team member) / Hymer, William (Research team member) / Krell, Abby Elizabeth (Research team member) / Lewis, Gabriel (Research team member) / Myers, Jack (Research team member) / Ramesh, Frankincense (Research team member) / Reagan, Sage (Research team member) / Kandan, Mani (Research team member) / Knox, Garrett (Research team member) / Leung, Michael (Research team member) / Schmit, Jacob (Research team member) / Woo, Sabrina (Research team member) / Anderson, Laura (Research team member) / Breshears, Scott (Research team member) / Majhail, Kajol (Research team member) / Ruan, Ellen (Research team member) / Smetanick, Jennifer (Research team member) / Bardfeld, Sierra (Research team member) / Cura, Joriel (Research team member) / Dholaria, Nikhil (Research team member) / Foote, Hannah (Research team member) / Liu, Tara (Research team member) / Raymond, Julia (Research team member) / Varghese, Mahima (Research team member)
Created2021
163901-Thumbnail Image.jpg
Description

Under the direction of Dr. Carolyn Compton, a group of seven Barrett honors students have embarked on a truly unique team thesis project to create a documentary on the process of creating a COVID-19 testing laboratory. This documentary tells the story of the ASU Biodesign Clinical Testing Laboratory (ABCTL), the

Under the direction of Dr. Carolyn Compton, a group of seven Barrett honors students have embarked on a truly unique team thesis project to create a documentary on the process of creating a COVID-19 testing laboratory. This documentary tells the story of the ASU Biodesign Clinical Testing Laboratory (ABCTL), the first lab in the western United States to offer public saliva testing to identify the presence of COVID-19.

ContributorsCura, Joriel (Director, Photographer) / Foote, Hannah (Producer, Sound designer) / Raymond, Julia (Production personnel) / Bardfeld, Sierra (Narrator, Editor) / Dholaria, Nikhil (Writer of added commentary) / Liu, Tara (Writer of added commentary) / Varghese, Mahima (Writer of added commentary) / Compton, Carolyn C. (Interviewee, Project director) / Harris, Valerie (Interviewee) / LaBaer, Joshua (Interviewee) / Miceli, Joseph (Interviewee) / Nelson, Megan (Interviewee) / Ungaro, Brianna (Interviewee)
Created2021
153917-Thumbnail Image.png
Description
Microbial electrochemical cells (MXCs) offer an alternative to methane production in anaerobic water treatment and the recapture of energy in waste waters. MXCs use anode respiring bacteria (ARB) to oxidize organic compounds and generate electrical current. In both anaerobic digestion and MXCs, an anaerobic food web connects the

Microbial electrochemical cells (MXCs) offer an alternative to methane production in anaerobic water treatment and the recapture of energy in waste waters. MXCs use anode respiring bacteria (ARB) to oxidize organic compounds and generate electrical current. In both anaerobic digestion and MXCs, an anaerobic food web connects the metabolisms of different microorganisms, using hydrolysis, fermentation and either methanogenesis or anode respiration to break down organic compounds, convert them to acetate and hydrogen, and then convert those intermediates into either methane or current. In this dissertation, understanding and managing the interactions among fermenters, methanogens, and ARB were critical to making developments in MXCs. Deep sequencing technologies were used in order to identify key community members, understand their role in the community, and identify selective pressures that drove the structure of microbial communities. This work goes from developing ARB communities by finding and using the best partners to managing ARB communities with undesirable partners. First, the foundation of MXCs, namely the ARB they rely on, was expanded by identifying novel ARB, the genus Geoalkalibacter, and demonstrating the presence of ARB in 7 out of 13 different environmental samples. Second, a new microbial community which converted butyrate to electricity at ~70% Coulombic efficiency was assembled and demonstrated that mixed communities can be used to assemble efficient ARB communities. Third, varying the concentrations of sugars and ethanol fed to methanogenic communities showed how increasing ED concentration drove decreases in methane production and increases in both fatty acids and the propionate producing genera Bacteroides and Clostridium. Finally, methanogenic batch cultures, fed glucose and sucrose, and exposed to 0.15 – 6 g N-NH4+ L-1 showed that increased NH4+ inhibited methane production, drove fatty acid and lactate production, and enriched Lactobacillales (up to 40% abundance) above 4 g N-NH4+ L-1. Further, 4 g N-NH4+ L-1 improved Coulombic efficiencies in MXCs fed with glucose and sucrose, and showed that MXC communities, especially the biofilm, are more resilient to high NH4+ than comparable methanogenic communities. These developments offer new opportunities for MXC applications, guidance for efficient operation of MXCs, and insights into fermentative microbial communities.
ContributorsMiceli, Joseph (Author) / Torres, César I (Thesis advisor) / Krajmalnik-Brown, Rosa (Thesis advisor) / Rittmann, Bruce (Committee member) / Arizona State University (Publisher)
Created2015
161305-Thumbnail Image.png
Description
Providing adequate resources for undergraduate students’ career development has been of utmost importance to meet demands from national agencies and industry leaders. At Arizona State University, the size of the undergraduate populations in the School of Life Sciences (SOLS) grew from 1,591 to 3,661, an increase of over 130%

Providing adequate resources for undergraduate students’ career development has been of utmost importance to meet demands from national agencies and industry leaders. At Arizona State University, the size of the undergraduate populations in the School of Life Sciences (SOLS) grew from 1,591 to 3,661, an increase of over 130% from 2003-2017. As of December 19, 2019, SOLS hosted a record 5,318 undergraduate majors on campus and 1,646 students in its online biological sciences program. This steady increase in life science undergraduate student enrollment at ASU attested to the need for appropriate career development education to be woven into the curriculum. Under the framework of higher education’s purpose to provide adequate resources for career success, a career development intervention was designed and implemented as a career planning course for life science students. The purpose of this project was to provide a continuum of job and career information to SOLS’ students to ensure they had appropriate, comprehensive information as they learned about and considered various career opportunities in the life sciences. Three theoretical perspectives guided the research project: Holland’s (1985, 1997) theory of vocational personalities and their connections to work environments, Sampson, Peterson, Reardon and Lenz’s (2003) cognitive information processing career decision theory (CIP), and Bandura’s (1986) self-efficacy theory. Survey results showed increases in all seven constructs—knowledge of career exploration and development tasks, perception of possible professional and career goals and opportunities, goal selection, occupational information, problem solving, planning, self-appraisal—over time among the students. Interview data indicated students noted (a) enrollment in the course for reasons such as determining a career choice that met their needs and preferences while managing expectations and pressures from external sources; (b) broadening perceptions of career options, and (c) developing career exploration and planning skills. The success from this discipline-specific career development course was timely because university leaders were seeking solutions to increase students’ career readiness. The discussion focused on complementarity of the data, connections to the extant research, implications for practice and research, personal lessons learned, and a conclusion.
ContributorsChristianson, Serena L. (Author) / Buss, Ray R. (Thesis advisor) / Fong, Raquel (Committee member) / Reardon, Robert (Committee member) / Arizona State University (Publisher)
Created2021
128777-Thumbnail Image.png
Description

Dehalococcoides mccartyi strains are of particular importance for bioremediation due to their unique capability of transforming perchloroethene (PCE) and trichloroethene (TCE) to non-toxic ethene, through the intermediates cis-dichloroethene (cis-DCE) and vinyl chloride (VC). Despite the widespread environmental distribution of Dehalococcoides, biostimulation sometimes fails to promote dechlorination beyond cis-DCE. In our

Dehalococcoides mccartyi strains are of particular importance for bioremediation due to their unique capability of transforming perchloroethene (PCE) and trichloroethene (TCE) to non-toxic ethene, through the intermediates cis-dichloroethene (cis-DCE) and vinyl chloride (VC). Despite the widespread environmental distribution of Dehalococcoides, biostimulation sometimes fails to promote dechlorination beyond cis-DCE. In our study, microcosms established with garden soil and mangrove sediment also stalled at cis-DCE, albeit Dehalococcoides mccartyi containing the reductive dehalogenase genes tceA, vcrA and bvcA were detected in the soil/sediment inocula. Reductive dechlorination was not promoted beyond cis-DCE, even after multiple biostimulation events with fermentable substrates and a lengthy incubation.

However, transfers from microcosms stalled at cis-DCE yielded dechlorination to ethene with subsequent enrichment cultures containing up to 109 Dehalococcoides mccartyi cells mL-1. Proteobacterial classes which dominated the soil/sediment communities became undetectable in the enrichments, and methanogenic activity drastically decreased after the transfers. We hypothesized that biostimulation of Dehalococcoides in the cis-DCE-stalled microcosms was impeded by other microbes present at higher abundances than Dehalococcoides and utilizing terminal electron acceptors from the soil/sediment, hence, outcompeting Dehalococcoides for H2. In support of this hypothesis, we show that garden soil and mangrove sediment microcosms bioaugmented with their respective cultures containing Dehalococcoides in high abundance were able to compete for H2 for reductive dechlorination from one biostimulation event and produced ethene with no obvious stall. Overall, our results provide an alternate explanation to consolidate conflicting observations on the ubiquity of Dehalococcoides mccartyi and occasional stalling of dechlorination at cis-DCE; thus, bringing a new perspective to better assess biological potential of different environments and to understand microbial interactions governing bioremediation.

ContributorsDelgado, Anca (Author) / Kang, Dae-Wook (Author) / Nelson, Katherine (Author) / Fajardo-Williams, Devyn (Author) / Miceli, Joseph (Author) / Done, Hansa (Author) / Popat, Sudeep (Author) / Krajmalnik-Brown, Rosa (Author) / Biodesign Institute (Contributor)
Created2014-06-20