Matching Items (65)
135873-Thumbnail Image.png
Description
Cancer remains one of the leading killers throughout the world. Death and disability due to lung cancer in particular accounts for one of the largest global economic burdens a disease presents. The burden on third-world countries is especially large due to the unusually large financial stress that comes from

Cancer remains one of the leading killers throughout the world. Death and disability due to lung cancer in particular accounts for one of the largest global economic burdens a disease presents. The burden on third-world countries is especially large due to the unusually large financial stress that comes from late tumor detection and expensive treatment options. Early detection using inexpensive techniques may relieve much of the burden throughout the world, not just in more developed countries. I examined the immune responses of lung cancer patients using immunosignatures – patterns of reactivity between host serum antibodies and random peptides. Immunosignatures reveal disease-specific patterns that are very reproducible. Immunosignaturing is a chip-based method that has the ability to display the antibody diversity from individual sera sample with low cost. Immunosignaturing is a medical diagnostic test that has many applications in current medical research and in diagnosis. From a previous clinical study, patients diagnosed for lung cancer were tested for their immunosignature vs. healthy non-cancer volunteers. The pattern of reactivity against the random peptides (the ‘immunosignature’) revealed common signals in cancer patients, absent from healthy controls. My study involved the search for common amino acid motifs in the cancer-specific peptides. My search through the hundreds of ‘hits’ revealed certain motifs that were repeated more times than expected by random chance. The amino acids that were the most conserved in each set include tryptophan, aspartic acid, glutamic acid, proline, alanine, serine, and lysine. The most overall conserved amino acid observed between each set was D - aspartic acid. The motifs were short (no more than 5-6 amino acids in a row), but the total number of motifs I identified was large enough to assure significance. I utilized Excel to organize the large peptide sequence libraries, then CLUSTALW to cluster similar-sequence peptides, then GLAM2 to find common themes in groups of peptides. In so doing, I found sequences that were also present in translated cancer expression libraries (RNA) that matched my motifs, suggesting that immunosignatures can find cancer-specific antigens that can be both diagnostic and potentially therapeutic.
ContributorsShiehzadegan, Shima (Author) / Johnston, Stephen (Thesis director) / Stafford, Phillip (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
136919-Thumbnail Image.png
Description
Photosynthesis is the process by which plants, algae, and bacteria use light energy to synthesize organic compounds to use as energy. Among these organisms are a kind of purple photosynthetic bacteria called Rhodobacter sphaeroides, a non-sulfur purple bacteria that grows aerobically in the dark by respiration. There have been many

Photosynthesis is the process by which plants, algae, and bacteria use light energy to synthesize organic compounds to use as energy. Among these organisms are a kind of purple photosynthetic bacteria called Rhodobacter sphaeroides, a non-sulfur purple bacteria that grows aerobically in the dark by respiration. There have been many contributions throughout the history of this group of bacteria. Rhodobacter sphaeroides is metabolically very diverse as it has many different ways to obtain energy--aerobic respiration and anoxygenic photosynthesis being just a couple of the ways to do so. This project is part of a larger ongoing project to study different mutant strains of Rhodobacter and the different ways in which carries out electron transfer/photosynthesis. This thesis focused on the improvements made to protocol (standard procedure of site directed mutagenesis) through a more efficient technique known as infusion.
ContributorsNucuta, Diana Ileana (Author) / Woodbury, Neal (Thesis director) / Lin, Su (Committee member) / Loskutov, Andrey (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-05
137139-Thumbnail Image.png
Description
The influenza virus, also known as "the flu", is an infectious disease that has constantly affected the health of humanity. There is currently no known cure for Influenza. The Center for Innovations in Medicine at the Biodesign Institute located on campus at Arizona State University has been developing synbodies as

The influenza virus, also known as "the flu", is an infectious disease that has constantly affected the health of humanity. There is currently no known cure for Influenza. The Center for Innovations in Medicine at the Biodesign Institute located on campus at Arizona State University has been developing synbodies as a possible Influenza therapeutic. Specifically, at CIM, we have attempted to design these initial synbodies to target the entire Influenza virus and preliminary data leads us to believe that these synbodies target Nucleoprotein (NP). Given that the synbody targets NP, the penetration of cells via synbody should also occur. Then by Western Blot analysis we evaluated for the diminution of NP level in treated cells versus untreated cells. The focus of my honors thesis is to explore how synthetic antibodies can potentially inhibit replication of the Influenza (H1N1) A/Puerto Rico/8/34 strain so that a therapeutic can be developed. A high affinity synbody for Influenza can be utilized to test for inhibition of Influenza as shown by preliminary data. The 5-5-3819 synthetic antibody's internalization in live cells was visualized with Madin-Darby Kidney Cells under a Confocal Microscope. Then by Western Blot analysis we evaluated for the diminution of NP level in treated cells versus untreated cells. Expression of NP over 8 hours time was analyzed via Western Blot Analysis, which showed NP accumulation was retarded in synbody treated cells. The data obtained from my honors thesis and preliminary data provided suggest that the synthetic antibody penetrates live cells and targets NP. The results of my thesis presents valuable information that can be utilized by other researchers so that future experiments can be performed, eventually leading to the creation of a more effective therapeutic for influenza.
ContributorsHayden, Joel James (Author) / Diehnelt, Chris (Thesis director) / Johnston, Stephen (Committee member) / Legutki, Bart (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2014-05
130316-Thumbnail Image.png
Description
Antibodies are essential for structural determinations and functional studies of membrane proteins, but antibody generation is limited by the availability of properly-folded and purified antigen. We describe the first application of genetic immunization to a structurally diverse set of membrane proteins to show that immunization of mice with DNA alone

Antibodies are essential for structural determinations and functional studies of membrane proteins, but antibody generation is limited by the availability of properly-folded and purified antigen. We describe the first application of genetic immunization to a structurally diverse set of membrane proteins to show that immunization of mice with DNA alone produced antibodies against 71% (n = 17) of the bacterial and viral targets. Antibody production correlated with prior reports of target immunogenicity in host organisms, underscoring the efficiency of this DNA-gold micronanoplex approach. To generate each antigen for antibody characterization, we also developed a simple in vitro membrane protein expression and capture method. Antibody specificity was demonstrated upon identifying, for the first time, membrane-directed heterologous expression of the native sequences of the FopA and FTT1525 virulence determinants from the select agent Francisella tularensis SCHU S4. These approaches will accelerate future structural and functional investigations of therapeutically-relevant membrane proteins.
ContributorsHansen, Debra (Author) / Robida, Mark (Author) / Craciunescu, Felicia (Author) / Loskutov, Andrey (Author) / Dorner, Katerina (Author) / Rodenberry, John-Charles (Author) / Wang, Xiao (Author) / Olson, Tien (Author) / Patel, Hetal (Author) / Fromme, Petra (Author) / Sykes, Kathryn (Author) / Biodesign Institute (Contributor) / Innovations in Medicine (Contributor) / Applied Structural Discovery (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Molecular Sciences (Contributor)
Created2016-02-24
132592-Thumbnail Image.png
Description
In this study, we demonstrate the effectiveness of a cancer type specific FrAmeShifT (FAST) vaccine. A murine breast cancer (mBC) FAST vaccine and a murine pancreatic cancer (mPC) FAST vaccine were tested in the 4T1 breast cancer syngeneic mouse model. The mBC FAST vaccine, both with and without check point

In this study, we demonstrate the effectiveness of a cancer type specific FrAmeShifT (FAST) vaccine. A murine breast cancer (mBC) FAST vaccine and a murine pancreatic cancer (mPC) FAST vaccine were tested in the 4T1 breast cancer syngeneic mouse model. The mBC FAST vaccine, both with and without check point inhibitors (CPI), significantly slowed tumor growth, reduced pulmonary metastasis and increased the cell-mediated immune response. In terms of tumor volumes, the mPC FAST vaccine was comparable to the untreated controls. However, a significant difference in tumor volume did emerge when the mPC vaccine was used with CPI. The collective data indicated that the immune checkpoint blockade therapy was only beneficial with suboptimal neoantigens. More importantly, the FAST vaccine, though requiring notably less resources, performed similarly to the personalized version of the frameshift breast cancer vaccine in the same mouse model. Furthermore, because the frameshift peptide (FSP) array provided a strong rationale for a focused vaccine, the FAST vaccine can theoretically be expanded and translated to any human cancer type. Overall, the FAST vaccine is a promising treatment that would provide the most benefit to patients while eliminating most of the challenges associated with current personal cancer vaccines.
ContributorsMurphy, Sierra Nicole (Author) / Johnston, Stephen (Thesis director) / Peterson, Milene (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
Description
The goal of this paper is to discuss the most efficient method to achieve early detection in lung cancers by reducing the occurrences of false-positive readings. Imaging techniques (computed tomography screenings) have greater impact than non-imaging techniques in early detection for lung cancer. On the other hand,

The goal of this paper is to discuss the most efficient method to achieve early detection in lung cancers by reducing the occurrences of false-positive readings. Imaging techniques (computed tomography screenings) have greater impact than non-imaging techniques in early detection for lung cancer. On the other hand, positron emission tomography and non-imaging techniques, such as liquid biopsy, are better at distinguishing cancer stages. Therefore, these techniques are not suitable early detection methods for lung cancer. Based on literature reviews, the combination that is most capable of early lung cancer detection incorporate low-dose computed tomography screenings, thin-section computed tomography screenings, and computer-aided diagnosis. Low-dose computed tomography screenings has lower radiation-associated risks compared to the standard-dose computed tomography. This technique can be used as both at the first examination and the follow-up examinations. Thin-section computed tomography screenings can be used as a supplement to check if there is any nodules that have not yet been discovered. Computer-aided diagnosis is an add-on method to make sure the computed tomography screenings images are being correctly labeled. Identifying other contributing factors to the effectiveness of the early lung cancer detection, such as the amount of forced expiratory volume, forced vital capacity, and the presence of emphysema, could also decrease the percentage of false positive outcomes.
ContributorsChuang, Hao-Yun (Author) / Johnston, Stephen (Thesis director) / Peterson, Milene (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133512-Thumbnail Image.png
Description
The objective of this thesis was to determine whether Zika Virus (ZIKV) can be effectively inactivated by Selective Photonic Disinfection (SEPHODIS) and determine whether key proteins involved in the infection process are preserved, making SEPHODIS a possible source for vaccine development. As of January 2018, there have been 3,720 confirmed

The objective of this thesis was to determine whether Zika Virus (ZIKV) can be effectively inactivated by Selective Photonic Disinfection (SEPHODIS) and determine whether key proteins involved in the infection process are preserved, making SEPHODIS a possible source for vaccine development. As of January 2018, there have been 3,720 confirmed cases of Congenital Zika Syndrome in infants, making a Zika Vaccine a high priority (Mitchell, 2018). SEPHODIS is a process that involves prolonged exposure of an object to a pulsing laser which can render it ineffective. Initially, ZIKV was subjected to laser inactivation for 6 hours, then a plaque assay was performed on both laser-treated and control samples. ZIKV was inactivated two-fold? after laser treatment, when compared with control, as indicated by the plaque assay results. Additionally, both samples were submitted to ELISA to evaluate antigenicity with a panel of monoclonal and human sera. As a second control, virus inactivated by formaldehyde (2%) was used. ELISA results showed that antigenicity of some proteins were preserved while others were probably disturbed. However, ELISA results show that ZIKV envelope protein (E-protein), the protein responsible for viral entry into cells, was effectively preserved after laser-treatment, implying that if laser parameters were tweaked to obtain more complete inactivation, then SEPHODIS may be an appropriate source for the development of a vaccine.
ContributorsViafora, Ataiyo Blue (Author) / Johnston, Stephen (Thesis director) / Tsen, Kong-Thon (Committee member) / School of Life Sciences (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134875-Thumbnail Image.png
Description
Productivity in the construction industry is an essential measure of production efficiency and economic progress, quantified by craft laborers' time spent directly adding value to a project. In order to better understand craft labor productivity as an aspect of lean construction, an activity analysis was conducted at the Arizona State

Productivity in the construction industry is an essential measure of production efficiency and economic progress, quantified by craft laborers' time spent directly adding value to a project. In order to better understand craft labor productivity as an aspect of lean construction, an activity analysis was conducted at the Arizona State University Palo Verde Main engineering dormitory construction site in December of 2016. The objective of this analysis on craft labor productivity in construction projects was to gather data regarding the efficiency of craft labor workers, make conclusions about the effects of time of day and other site-specific factors on labor productivity, as well as suggest improvements to implement in the construction process. Analysis suggests that supporting tasks, such as traveling or materials handling, constitute the majority of craft labors' efforts on the job site with the highest percentages occurring at the beginning and end of the work day. Direct work and delays were approximately equal at about 20% each hour with the highest peak occurring at lunchtime between 10:00 am and 11:00 am. The top suggestion to improve construction productivity would be to perform an extensive site utilization analysis due to the confined nature of this job site. Despite the limitations of an activity analysis to provide a complete prospective of all the factors that can affect craft labor productivity as well as the small number of days of data acquisition, this analysis provides a basic overview of the productivity at the Palo Verde Main construction site. Through this research, construction managers can more effectively generate site plans and schedules to increase labor productivity.
ContributorsFord, Emily Lucile (Author) / Grau, David (Thesis director) / Chong, Oswald (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134876-Thumbnail Image.png
Description
PD-L1 blockade has shown recent success in cancer therapy and cancer vaccine regimens. One approach for anti-PD-L1 antibodies has been their application as adjuvants for cancer vaccines. Given the disadvantages of such antibodies, including long half-life and adverse events related to their use, a novel strategy using synbodies in place

PD-L1 blockade has shown recent success in cancer therapy and cancer vaccine regimens. One approach for anti-PD-L1 antibodies has been their application as adjuvants for cancer vaccines. Given the disadvantages of such antibodies, including long half-life and adverse events related to their use, a novel strategy using synbodies in place of antibodies can be tested. Synbodies offer a variety of advantages, including shorter half-life, smaller size, and cheaper cost. Peptides that could bind PD-L1 were identified via peptide arrays and used to construct synbodies. These synbodies were tested with inhibition ELISA assays, SPR, and pull down assays. Additional flow cytometry analysis was done to determine the binding specificity of the synbodies to PD-L1 and the ability of those synbodies to inhibit the PD-L1/PD-1 interaction. Although analysis of permeabilized cells expressing PD-L1 indicated that the synbodies could successfully bind PD-L1, those results were not replicated in non-permeabilized cells. Further assays suggested that the binding of the synbodies was non-specific. Other tests were done to see if the synbodies could inhibit the PD-1/PD-L1 interaction. This assay did not yield any conclusive results and further experimentation is needed to determine the efficacy of the synbodies in inhibiting this interaction.
ContributorsMujahed, Tala (Author) / Johnston, Stephen (Thesis director) / Blattman, Joseph (Committee member) / Diehnelt, Chris (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134743-Thumbnail Image.png
Description
The devastating 2014 Ebola virus outbreak in Western Africa demonstrated the lack of therapeutic approaches available for the virus. Although monoclonal antibodies (mAb) and other molecules have been developed that bind the virus, no therapeutic has shown the efficacy needed for FDA approval. Here, a library of 50 peptide based

The devastating 2014 Ebola virus outbreak in Western Africa demonstrated the lack of therapeutic approaches available for the virus. Although monoclonal antibodies (mAb) and other molecules have been developed that bind the virus, no therapeutic has shown the efficacy needed for FDA approval. Here, a library of 50 peptide based ligands that bind the glycoprotein of the Zaire Ebola virus (GP) were developed. Using whole virus screening of vesicular stomatitis virus pseudotyped with GP, low affinity peptides were identified for ligand construction. In depth analysis showed that two of the peptide based molecules bound the Zaire GP with <100 nM KD. One of these two ligands was blocked by a known neutralizing mAb, 2G4, and showed cross-reactivity to the Sudan GP. This work presents ligands with promise for therapeutic applications across multiple variants of the Ebola virus.
ContributorsRabinowitz, Joshua Avraam (Author) / Diehnelt, Chris (Thesis director) / Johnston, Stephen (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12