Matching Items (194)
150231-Thumbnail Image.png
Description
In this thesis I introduce a new direction to computing using nonlinear chaotic dynamics. The main idea is rich dynamics of a chaotic system enables us to (1) build better computers that have a flexible instruction set, and (2) carry out computation that conventional computers are not good at it.

In this thesis I introduce a new direction to computing using nonlinear chaotic dynamics. The main idea is rich dynamics of a chaotic system enables us to (1) build better computers that have a flexible instruction set, and (2) carry out computation that conventional computers are not good at it. Here I start from the theory, explaining how one can build a computing logic block using a chaotic system, and then I introduce a new theoretical analysis for chaos computing. Specifically, I demonstrate how unstable periodic orbits and a model based on them explains and predicts how and how well a chaotic system can do computation. Furthermore, since unstable periodic orbits and their stability measures in terms of eigenvalues are extractable from experimental times series, I develop a time series technique for modeling and predicting chaos computing from a given time series of a chaotic system. After building a theoretical framework for chaos computing I proceed to architecture of these chaos-computing blocks to build a sophisticated computing system out of them. I describe how one can arrange and organize these chaos-based blocks to build a computer. I propose a brand new computer architecture using chaos computing, which shifts the limits of conventional computers by introducing flexible instruction set. Our new chaos based computer has a flexible instruction set, meaning that the user can load its desired instruction set to the computer to reconfigure the computer to be an implementation for the desired instruction set. Apart from direct application of chaos theory in generic computation, the application of chaos theory to speech processing is explained and a novel application for chaos theory in speech coding and synthesizing is introduced. More specifically it is demonstrated how a chaotic system can model the natural turbulent flow of the air in the human speech production system and how chaotic orbits can be used to excite a vocal tract model. Also as another approach to build computing system based on nonlinear system, the idea of Logical Stochastic Resonance is studied and adapted to an autoregulatory gene network in the bacteriophage λ.
ContributorsKia, Behnam (Author) / Ditto, William (Thesis advisor) / Huang, Liang (Committee member) / Lai, Ying-Cheng (Committee member) / Helms Tillery, Stephen (Committee member) / Arizona State University (Publisher)
Created2011
150551-Thumbnail Image.png
Description
Complex dynamical systems consisting interacting dynamical units are ubiquitous in nature and society. Predicting and reconstructing nonlinear dynamics of units and the complex interacting networks among them serves the base for the understanding of a variety of collective dynamical phenomena. I present a general method to address the two outstanding

Complex dynamical systems consisting interacting dynamical units are ubiquitous in nature and society. Predicting and reconstructing nonlinear dynamics of units and the complex interacting networks among them serves the base for the understanding of a variety of collective dynamical phenomena. I present a general method to address the two outstanding problems as a whole based solely on time-series measurements. The method is implemented by incorporating compressive sensing approach that enables an accurate reconstruction of complex dynamical systems in terms of both nodal equations that determines the self-dynamics of units and detailed coupling patterns among units. The representative advantages of the approach are (i) the sparse data requirement which allows for a successful reconstruction from limited measurements, and (ii) general applicability to identical and nonidentical nodal dynamics, and to networks with arbitrary interacting structure, strength and sizes. Another two challenging problem of significant interest in nonlinear dynamics: (i) predicting catastrophes in nonlinear dynamical systems in advance of their occurrences and (ii) predicting the future state for time-varying nonlinear dynamical systems, can be formulated and solved in the framework of compressive sensing using only limited measurements. Once the network structure can be inferred, the dynamics behavior on them can be investigated, for example optimize information spreading dynamics, suppress cascading dynamics and traffic congestion, enhance synchronization, game dynamics, etc. The results can yield insights to control strategies design in the real-world social and natural systems. Since 2004, there has been a tremendous amount of interest in graphene. The most amazing feature of graphene is that there exists linear energy-momentum relationship when energy is low. The quasi-particles inside the system can be treated as chiral, massless Dirac fermions obeying relativistic quantum mechanics. Therefore, the graphene provides one perfect test bed to investigate relativistic quantum phenomena, such as relativistic quantum chaotic scattering and abnormal electron paths induced by klein tunneling. This phenomenon has profound implications to the development of graphene based devices that require stable electronic properties.
ContributorsYang, Rui (Author) / Lai, Ying-Cheng (Thesis advisor) / Duman, Tolga M. (Committee member) / Akis, Richard (Committee member) / Huang, Liang (Committee member) / Arizona State University (Publisher)
Created2012
151230-Thumbnail Image.png
Description
What can classical chaos do to quantum systems is a fundamental issue highly relevant to a number of branches in physics. The field of quantum chaos has been active for three decades, where the focus was on non-relativistic quantumsystems described by the Schr¨odinger equation. By developing an efficient method to

What can classical chaos do to quantum systems is a fundamental issue highly relevant to a number of branches in physics. The field of quantum chaos has been active for three decades, where the focus was on non-relativistic quantumsystems described by the Schr¨odinger equation. By developing an efficient method to solve the Dirac equation in the setting where relativistic particles can tunnel between two symmetric cavities through a potential barrier, chaotic cavities are found to suppress the spread in the tunneling rate. Tunneling rate for any given energy assumes a wide range that increases with the energy for integrable classical dynamics. However, for chaotic underlying dynamics, the spread is greatly reduced. A remarkable feature, which is a consequence of Klein tunneling, arise only in relativistc quantum systems that substantial tunneling exists even for particle energy approaching zero. Similar results are found in graphene tunneling devices, implying high relevance of relativistic quantum chaos to the development of such devices. Wave propagation through random media occurs in many physical systems, where interesting phenomena such as branched, fracal-like wave patterns can arise. The generic origin of these wave structures is currently a matter of active debate. It is of fundamental interest to develop a minimal, paradigmaticmodel that can generate robust branched wave structures. In so doing, a general observation in all situations where branched structures emerge is non-Gaussian statistics of wave intensity with an algebraic tail in the probability density function. Thus, a universal algebraic wave-intensity distribution becomes the criterion for the validity of any minimal model of branched wave patterns. Coexistence of competing species in spatially extended ecosystems is key to biodiversity in nature. Understanding the dynamical mechanisms of coexistence is a fundamental problem of continuous interest not only in evolutionary biology but also in nonlinear science. A continuous model is proposed for cyclically competing species and the effect of the interplay between the interaction range and mobility on coexistence is investigated. A transition from coexistence to extinction is uncovered with a non-monotonic behavior in the coexistence probability and switches between spiral and plane-wave patterns arise. Strong mobility can either promote or hamper coexistence, while absent in lattice-based models, can be explained in terms of nonlinear partial differential equations.
ContributorsNi, Xuan (Author) / Lai, Ying-Cheng (Thesis advisor) / Huang, Liang (Committee member) / Yu, Hongbin (Committee member) / Akis, Richard (Committee member) / Arizona State University (Publisher)
Created2012
130393-Thumbnail Image.png
Description
Mathematical epidemiology, one of the oldest and richest areas in mathematical biology, has significantly enhanced our understanding of how pathogens emerge, evolve, and spread. Classical epidemiological models, the standard for predicting and managing the spread of infectious disease, assume that contacts between susceptible and infectious individuals depend on their relative

Mathematical epidemiology, one of the oldest and richest areas in mathematical biology, has significantly enhanced our understanding of how pathogens emerge, evolve, and spread. Classical epidemiological models, the standard for predicting and managing the spread of infectious disease, assume that contacts between susceptible and infectious individuals depend on their relative frequency in the population. The behavioral factors that underpin contact rates are not generally addressed. There is, however, an emerging a class of models that addresses the feedbacks between infectious disease dynamics and the behavioral decisions driving host contact. Referred to as “economic epidemiology” or “epidemiological economics,” the approach explores the determinants of decisions about the number and type of contacts made by individuals, using insights and methods from economics. We show how the approach has the potential both to improve predictions of the course of infectious disease, and to support development of novel approaches to infectious disease management.
Created2015-12-01
132010-Thumbnail Image.png
Description
Complex human controls is a topic of much interest in the fields of robotics, manufacturing, space exploration and many others. Even simple tasks that humans perform with ease can be extremely complicated when observed from a controls and complex systems perspective. One such simple task is that of a human

Complex human controls is a topic of much interest in the fields of robotics, manufacturing, space exploration and many others. Even simple tasks that humans perform with ease can be extremely complicated when observed from a controls and complex systems perspective. One such simple task is that of a human carrying and moving a coffee cup. Though this may be a mundane task for humans, when this task is modelled and analyzed, the system may be quite chaotic in nature. Understanding such systems is key to the development robots and autonomous systems that can perform these tasks themselves.

The coffee cup system can be simplified and modeled by a cart-and-pendulum system. Bazzi et al. and Maurice et al. present two different cart-and-pendulum systems to represent the coffee cup system [1],[2]. The purpose of this project was to build upon these systems and to gain a better understanding of the coffee cup system and to determine where chaos existed within the system. The honors thesis team first worked with their senior design group to develop a mathematical model for the cart-and-pendulum system based on the Bazzi and Maurice papers [1],[2]. This system was analyzed and then built upon by the honors thesis team to build a cart-and-two-pendulum model to represent the coffee cup system more accurately.

Analysis of the single pendulum model showed that there exists a low frequency region where the pendulum and the cart remain in phase with each other and a high frequency region where the cart and pendulum have a π phase difference between them. The transition point of the low and high frequency region is determined by the resonant frequency of the pendulum. The analysis of the two-pendulum system also confirmed this result and revealed that differences in length between the pendulum cause the pendulums to transition to the high frequency regions at separate frequency. The pendulums have different resonance frequencies and transition into the high frequency region based on their own resonant frequency. This causes a range of frequencies where the pendulums are out of phase from each other. After both pendulums have transitioned, they remain in phase with each other and out of phase from the cart.

However, if the length of the pendulum is decreased too much, the system starts to exhibit chaotic behavior. The short pendulum starts to act in a chaotic manner and the phase relationship between the pendulums and the carts is no longer maintained. Since the pendulum length represents the distance between the particle of coffee and the top of the cup, this implies that coffee near the top of the cup would cause the system to act chaotically. Further analysis would be needed to determine the reason why the length affects the system in this way.
ContributorsZindani, Abdul Rahman (Co-author) / Crane, Kari (Co-author) / Lai, Ying-Cheng (Thesis director) / Jiang, Junjie (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12
133056-Thumbnail Image.png
Description
While non-invasive breast cancer treatments may be considered less costly in the short-term, over the course of a lifetime, a more aggressive treatment can be overall less costly, especially with recurrence cases; however, these more aggressive treatments are not necessarily covered by insurance and are difficult to discuss in the

While non-invasive breast cancer treatments may be considered less costly in the short-term, over the course of a lifetime, a more aggressive treatment can be overall less costly, especially with recurrence cases; however, these more aggressive treatments are not necessarily covered by insurance and are difficult to discuss in the short amount of time in physician consultations. This analysis studied data from 982 women diagnosed with breast cancer over a five-year period to evaluate monetary costs associated with treatment options and incorporated five in-depth interviews to understand experiences and non-monetary costs. Data showed the most expensive option was a unilateral mastectomy with radiation therapy and the least costly option was breast conserving surgery. Interviews determined each woman evaluated the monetary costs with each treatment but most heavily focused on personal values, biases and recommended opinions when deciding on a treatment. The use of prompt sheets before physician appointments and consultations, along with the addition of financial counselor meeting with each patient can improve patient satisfaction and alleviate stress by simplifying a woman's choice in deciding a treatment. In addition, increased insurance coverage to include every treatment chosen by women (rather than on a case-by-case basis), specifically contralateral prophylactic mastectomy and additional screening options, could decrease long term costs \u2014 both monetarily and in quality of life for patients.
ContributorsOsumi, Alana (Author) / LaRosa, Julia (Thesis director) / Sivanantham, Jai (Committee member) / Barrett, The Honors College (Contributor) / W.P. Carey School of Business (Contributor)
Created2018-12
133387-Thumbnail Image.png
Description
In 2016, in the United States alone, the cosmetics industry made an estimated 62.46 billion dollars in revenue (Revenue of the Cosmetic Industry in the U.S. 2002-2016 | Forecast). With a consistent increase in sales in the last several years, the industry has reached continued success even during times of

In 2016, in the United States alone, the cosmetics industry made an estimated 62.46 billion dollars in revenue (Revenue of the Cosmetic Industry in the U.S. 2002-2016 | Forecast). With a consistent increase in sales in the last several years, the industry has reached continued success even during times of hardship, such as the Great Recession of 2008. The use of Corporate Social Responsibility (CSR), external campaigns, and thoughtful packaging and ingredients resonates with targeted consumers. This has served as an effective strategy to maintain growth in the industry. Cosmetic companies promote their brand image using these sustainability tactics, but there seems to be a lack of transparency in this unregulated industry. The purpose of this thesis is to determine if the cosmetics industry is a good steward of the sustainability movement. Important terms and concepts relating to the industry will be discussed, then an analysis of sustainability focused cosmetic brands will be provided, which highlights the extent to which these brands engage in activities that promote sustainability. This is followed by an application of findings to a company that could benefit from using such practices. Overall, the analysis of the different brands proved to be shocking and disappointing. This is due to the sheer amount that scored very poorly based on the sustainability criteria developed. The cosmetics industry is too inconsistent and too unregulated to truly act as a good steward for sustainability. Though some companies in the industry succeed, these accomplishments are not consistent across all cosmetic companies. Hence, the cosmetics industry as a good steward for sustainability can only be as strong as its weakest link.
ContributorsMamus, Sydney Wasescha (Author) / Ostrom, Amy (Thesis director) / Kristofferson, Kirk (Committee member) / Department of Marketing (Contributor) / W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133391-Thumbnail Image.png
Description
This report was commissioned to provide an analysis and evaluation of consumer perceptions and branding as it relates to the political and social climate in America. To be able to do this, the paper analyzes shifts in the external environment as well as researching case studies and online consumer perception

This report was commissioned to provide an analysis and evaluation of consumer perceptions and branding as it relates to the political and social climate in America. To be able to do this, the paper analyzes shifts in the external environment as well as researching case studies and online consumer perception surveys. Overall, this paper aims to examine the distributed survey and attempt to correlate and identify how branding, consumer perceptions, and social and political issues all can work and affect one another. Through the administration of this survey, we were able to formulate a conclusion that points towards the importance of brands actively adhering to changing consumer preferences, ideals, and expectations.
ContributorsClark, Sydney (Co-author) / Loera, Carolina (Co-author) / Montoya, Detra (Thesis director) / Samper, Adriana (Committee member) / W.P. Carey School of Business (Contributor) / Department of Marketing (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133403-Thumbnail Image.png
Description
The use of generalized linear models in loss reserving is not new; many statistical models have been developed to fit the loss data gathered by various insurance companies. The most popular models belong to what Glen Barnett and Ben Zehnwirth in "Best Estimates for Reserves" call the "extended link ratio

The use of generalized linear models in loss reserving is not new; many statistical models have been developed to fit the loss data gathered by various insurance companies. The most popular models belong to what Glen Barnett and Ben Zehnwirth in "Best Estimates for Reserves" call the "extended link ratio family (ELRF)," as they are developed from the chain ladder algorithm used by actuaries to estimate unpaid claims. Although these models are intuitive and easy to implement, they are nevertheless flawed because many of the assumptions behind the models do not hold true when fitted with real-world data. Even more problematically, the ELRF cannot account for environmental changes like inflation which are often observed in the status quo. Barnett and Zehnwirth conclude that a new set of models that contain parameters for not only accident year and development period trends but also payment year trends would be a more accurate predictor of loss development. This research applies the paper's ideas to data gathered by Company XYZ. The data was fitted with an adapted version of Barnett and Zehnwirth's new model in R, and a trend selection algorithm was developed to accompany the regression code. The final forecasts were compared to Company XYZ's booked reserves to evaluate the predictive power of the model.
ContributorsZhang, Zhihan Jennifer (Author) / Milovanovic, Jelena (Thesis director) / Tomita, Melissa (Committee member) / Zicarelli, John (Committee member) / W.P. Carey School of Business (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133404-Thumbnail Image.png
Description
This research aims to look at the lower level collegiate athletics, Intramural sports and club sports, in comparison to Division 1 varsity athletics to see how their sport lives differ and why they are still competing when the reward does not seem as grand as the Varsity athletics. The findings

This research aims to look at the lower level collegiate athletics, Intramural sports and club sports, in comparison to Division 1 varsity athletics to see how their sport lives differ and why they are still competing when the reward does not seem as grand as the Varsity athletics. The findings show that the socially ingrained aspect of sports is the reason that most lower level athletes keep competing.
ContributorsHarvey, Abigail (Author) / Jonsson, Hjorleifur (Thesis director) / Jackson, Victoria (Committee member) / School of Human Evolution and Social Change (Contributor) / W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05