Matching Items (61)
136109-Thumbnail Image.png
Description
Students across the United States lack the necessary skills to be successful college students in Science, Technology and Math (STEM) majors and as a result post-secondary institutions are developing summer bridge programs to aid in their transition. As they develop these programs, effective theory and approach are critical to developing

Students across the United States lack the necessary skills to be successful college students in Science, Technology and Math (STEM) majors and as a result post-secondary institutions are developing summer bridge programs to aid in their transition. As they develop these programs, effective theory and approach are critical to developing successful programs. Though there are a multitude of theories on successful student development, a focus on self-efficacy is critical. Summer Bridge programs across the country as well as the Bio Bridge summer program at Arizona State University were studied alone and through the lens of Cognitive Self-Efficacy Theory as mentioned in Albert Bandura's "Perceived Self-Efficacy in Cognitive Development and Functioning." Cognitive Self-Efficacy Theory provides a framework for self-efficacy development in academic settings. An analysis of fifteen bridge programs found that a large majority focused on developing academic capabilities and often overlooked development of community and social efficacy. An even larger number failed to focus on personal psychology in managing self-debilitating thought patterns based on published goals. Further, Arizona State University's Bio Bridge program could not be considered successful at developing cognitive self-efficacy or increasing retention as data was inconclusive. However, Bio Bridge was tremendously successful at developing social efficacy and community among participants and faculty. Further research and better evaluative techniques need to be developed to understand the program's effectiveness in cognitive self-efficacy development and retention.
ContributorsTummala, Sailesh Vardhan (Author) / Orchinik, Miles (Thesis director) / Brownell, Sara (Committee member) / Shortlidge, Erin (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136827-Thumbnail Image.png
Description
Collaborative learning has been found to enhance student learning experiences through interaction with peers and instructors in a way that typically does not occur in a traditional lecture course. However, more than half of all collaborative learning structures have failed to last very long after their initial introductions which makes

Collaborative learning has been found to enhance student learning experiences through interaction with peers and instructors in a way that typically does not occur in a traditional lecture course. However, more than half of all collaborative learning structures have failed to last very long after their initial introductions which makes understanding the factors of collaboration that make it successful very important. The purpose of this study was to evaluate collaborative learning in a blended learning course to gauge student perceptions and the factors of collaboration and student demographics that impact that perception. This was done by surveying a sample of students in BIO 282 about their experiences in the BIO 281 course they took previously which was a new introductory Biology course with a blended learning structure. It was found that students agree that collaboration is beneficial as it provides an opportunity to gain additional insight from peers and improve students' understanding of course content. Also, differences in student gender and first generation status have less of an effect on student perceptions of collaboration than differences in academic achievement (grade) bracket.
ContributorsVu, Bethany Thao-Vy (Author) / Stout, Valerie (Thesis director) / Brownell, Sara (Committee member) / Wright, Christian (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-05
136383-Thumbnail Image.png
Description
We, a team of students and faculty in the life sciences at Arizona State University (ASU), currently teach an Introduction to Biology course in a Level 5, or maximum-security unit with the support of the Arizona Department of Corrections and the Prison Education Program at ASU. This course aims to

We, a team of students and faculty in the life sciences at Arizona State University (ASU), currently teach an Introduction to Biology course in a Level 5, or maximum-security unit with the support of the Arizona Department of Corrections and the Prison Education Program at ASU. This course aims to enhance current programs at the unit by offering inmates an opportunity to practice literacy and math skills, while also providing exposure to a new academic field (science, and specifically biology). Numerous studies, including a 2005 study from the Arizona Department of Corrections (ADC), have found that vocational programs, including prison education programs, reduce recidivism rates (ADC 2005, Esperian 2010, Jancic 1988, Steurer et al. 2001, Ubic 2002) and may provide additional benefits such as engagement with a world outside the justice system (Duguid 1992), the opportunity for inmates to revise personal patterns of rejecting education that they may regret, and the ability of inmate parents to deliberately set a good example for their children (Hall and Killacky 2008). Teaching in a maximum security prison unit poses special challenges, which include a prohibition on most outside materials (except paper), severe restrictions on student-teacher and student-student interactions, and the inability to perform any lab exercises except limited computer simulations. Lack of literature discussing theoretical and practical aspects of teaching science in such environment has prompted us to conduct an ongoing study to generate notes and recommendations from this class through the use of surveys, academic evaluation of students' work and ongoing feedback from both teachers and students to inform teaching practices in future science classes in high-security prison units.
ContributorsLarson, Anika Jade (Author) / Mor, Tsafrir (Thesis director) / Brownell, Sara (Committee member) / Lockard, Joe (Committee member) / Barrett, The Honors College (Contributor) / School of Politics and Global Studies (Contributor) / School of Life Sciences (Contributor)
Created2015-05
132219-Thumbnail Image.png
Description
This thesis contains three chapters, all of which involve using culturally inclusive education to explore the experiences of religious undergraduate biology students. The first chapter is an essay entitled "Toward Culturally Inclusive Undergraduate Biology Education," which describes a literature review performed with the aim of characterizing the landscape of cultural

This thesis contains three chapters, all of which involve using culturally inclusive education to explore the experiences of religious undergraduate biology students. The first chapter is an essay entitled "Toward Culturally Inclusive Undergraduate Biology Education," which describes a literature review performed with the aim of characterizing the landscape of cultural competence and related terms for biology educators and biology education researchers. This chapter highlights the use of 16 different terms related to cultural competence and presents these terms, their definitions, and highlights their similarities and differences. This chapter also identifies gaps in the cultural competence literature, and presents a set of recommendations to support better culturally inclusive interventions in undergraduate science education. The second chapter, entitled "Different Evolution Acceptance Instruments Lead to Different Research Findings," describes a study in which the source of 30 years of conflicting research on the relationship between evolution acceptance and evolution understanding was determined. The results of this study showed that different instruments used to measure evolution acceptance sometimes lead to different research results and conclusions. The final chapter, entitled "Believing That Evolution is Atheistic is Associated with Poor Evolution Education Outcomes Among Religious College Students," describes a study characterizing definitions of evolution that religious undergraduate biology students may hold, and examines the impact that those definitions of evolution have on multiple outcome variables. In this study, we found that among the most religious students, those who thought evolution is atheistic were less accepting of evolution, less comfortable learning evolution, and perceived greater conflict between their personal religious beliefs and evolution than those who thought evolution is agnostic.
ContributorsDunlop, Hayley Marie (Author) / Brownell, Sara (Thesis director) / Collins, James (Committee member) / Barnes, M. Elizabeth (Committee member) / School of Human Evolution & Social Change (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133704-Thumbnail Image.png
Description
In response to a national call within STEM to increase diversity within the sciences, there has been a growth in science education research aimed at increasing participation of underrepresented groups in science, such as women and ethnic/racial minorities. However, an underexplored underrepresented group in science are religious students. Though 82%

In response to a national call within STEM to increase diversity within the sciences, there has been a growth in science education research aimed at increasing participation of underrepresented groups in science, such as women and ethnic/racial minorities. However, an underexplored underrepresented group in science are religious students. Though 82% of the United States population is religiously affiliated, only 52% of scientists are religious (Pew, 2009). Even further, only 32% of biologists are religious, with 25% identifying as Christian (Pew, 2009; Ecklund, 2007). One reason as to why Christian individuals are underrepresented in biology is because faculty may express biases that affect students' ability to persist in the field of biology. In this study, we explored how revealing a Christian student's religious identity on science graduate application would impact faculty's perception of the student during the biology graduate application process. We found that faculty were significantly more likely to perceive the student who revealed their religious identity to be less competent, hirable, likeable, and faculty would be less likely to mentor the student. Our study informs upon possible reasons as to why there is an underrepresentation of Christians in science. This further suggests that bias against Christians must be addressed in order to avoid real-world, negative treatment of Christians in science.
ContributorsTruong, Jasmine Maylee (Author) / Brownell, Sara (Thesis director) / Gaughan, Monica (Committee member) / Barnes, Liz (Committee member) / School of Life Sciences (Contributor) / W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134485-Thumbnail Image.png
Description
Learning student names has been promoted as an inclusive classroom practice, but it is unknown whether students value having their names known by an instructor. We explored this question in the context of a high-enrollment active-learning undergraduate biology course. Using surveys and semistructured interviews, we investigated whether students perceived that

Learning student names has been promoted as an inclusive classroom practice, but it is unknown whether students value having their names known by an instructor. We explored this question in the context of a high-enrollment active-learning undergraduate biology course. Using surveys and semistructured interviews, we investigated whether students perceived that instructors know their names, the importance of instructors knowing their names, and how instructors learned their names. We found that, while only 20% of students perceived their names were known in previous high-enrollment biology classes, 78% of students perceived that an instructor of this course knew their names. However, instructors only knew 53% of names, indicating that instructors do not have to know student names in order for students to perceive that their names are known. Using grounded theory, we identified nine reasons why students feel that having their names known is important. When we asked students how they perceived instructors learned their names, the most common response was instructor use of name tents during in-class discussion. These findings suggest that students can benefit from perceiving that instructors know their names and name tents could be a relatively easy way for students to think that instructors know their names. Academic self-concept is one's perception of his or her ability in an academic domain compared to other students. As college biology classrooms transition from lecturing to active learning, students interact more with each other and are likely comparing themselves more to students in the class. Student characteristics, such as gender and race/ethnicity, can impact the level of academic self-concept, however this has been unexplored in the context of undergraduate biology. In this study, we explored whether student characteristics can affect academic self-concept in the context of a college physiology course. Using a survey, students self-reported how smart they perceived themselves in the context of physiology compared to the whole class and compared to the student they worked most closely with in class. Using logistic regression, we found that males and native English speakers had significantly higher academic self-concept compared to the whole class compared with females and non-native English speakers, respectively. We also found that males and non-transfer students had significantly higher academic self-concept compared to the student they worked most closely with in class compared with females and transfer students, respectively. Using grounded theory, we identified ten distinct factors that influenced how students determined whether they are more or less smart than their groupmate. Finally, we found that students were more likely to report participating less than their groupmate if they had a lower academic self-concept. These findings suggest that student characteristics can influence students' academic self-concept, which in turn may influence their participation in small group discussion.
ContributorsKrieg, Anna Florence (Author) / Brownell, Sara (Thesis director) / Stout, Valerie (Committee member) / Cooper, Katelyn (Committee member) / School of Life Sciences (Contributor) / School of Politics and Global Studies (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134875-Thumbnail Image.png
Description
Productivity in the construction industry is an essential measure of production efficiency and economic progress, quantified by craft laborers' time spent directly adding value to a project. In order to better understand craft labor productivity as an aspect of lean construction, an activity analysis was conducted at the Arizona State

Productivity in the construction industry is an essential measure of production efficiency and economic progress, quantified by craft laborers' time spent directly adding value to a project. In order to better understand craft labor productivity as an aspect of lean construction, an activity analysis was conducted at the Arizona State University Palo Verde Main engineering dormitory construction site in December of 2016. The objective of this analysis on craft labor productivity in construction projects was to gather data regarding the efficiency of craft labor workers, make conclusions about the effects of time of day and other site-specific factors on labor productivity, as well as suggest improvements to implement in the construction process. Analysis suggests that supporting tasks, such as traveling or materials handling, constitute the majority of craft labors' efforts on the job site with the highest percentages occurring at the beginning and end of the work day. Direct work and delays were approximately equal at about 20% each hour with the highest peak occurring at lunchtime between 10:00 am and 11:00 am. The top suggestion to improve construction productivity would be to perform an extensive site utilization analysis due to the confined nature of this job site. Despite the limitations of an activity analysis to provide a complete prospective of all the factors that can affect craft labor productivity as well as the small number of days of data acquisition, this analysis provides a basic overview of the productivity at the Palo Verde Main construction site. Through this research, construction managers can more effectively generate site plans and schedules to increase labor productivity.
ContributorsFord, Emily Lucile (Author) / Grau, David (Thesis director) / Chong, Oswald (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134662-Thumbnail Image.png
Description
The overall energy consumption around the United States has not been reduced even with the advancement of technology over the past decades. Deficiencies exist between design and actual energy performances. Energy Infrastructure Systems (EIS) are impacted when the amount of energy production cannot be accurately and efficiently forecasted. Inaccurate engineering

The overall energy consumption around the United States has not been reduced even with the advancement of technology over the past decades. Deficiencies exist between design and actual energy performances. Energy Infrastructure Systems (EIS) are impacted when the amount of energy production cannot be accurately and efficiently forecasted. Inaccurate engineering assumptions can result when there is a lack of understanding on how energy systems can operate in real-world applications. Energy systems are complex, which results in unknown system behaviors, due to an unknown structural system model. Currently, there exists a lack of data mining techniques in reverse engineering, which are needed to develop efficient structural system models. In this project, a new type of reverse engineering algorithm has been applied to a year's worth of energy data collected from an ASU research building called MacroTechnology Works, to identify the structural system model. Developing and understanding structural system models is the first step in creating accurate predictive analytics for energy production. The associative network of the building's data will be highlighted to accurately depict the structural model. This structural model will enhance energy infrastructure systems' energy efficiency, reduce energy waste, and narrow the gaps between energy infrastructure design, planning, operation and management (DPOM).
ContributorsCamarena, Raquel Jimenez (Author) / Chong, Oswald (Thesis director) / Ye, Nong (Committee member) / Industrial, Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135209-Thumbnail Image.png
Description
Building construction, design and maintenance is a sector of engineering where improved efficiency will have immense impacts on resource consumption and environmental health. This research closely examines the Leadership in Environment and Energy Design (LEED) rating system and the International Green Construction Code (IgCC). The IgCC is a model code,

Building construction, design and maintenance is a sector of engineering where improved efficiency will have immense impacts on resource consumption and environmental health. This research closely examines the Leadership in Environment and Energy Design (LEED) rating system and the International Green Construction Code (IgCC). The IgCC is a model code, written with the same structure as many building codes. It is a standard that can be enforced if a city's government decides to adopt it. When IgCC is enforced, the buildings either meet all of the requirements set forth in the document or it fails to meet the code standards. The LEED Rating System, on the other hand, is not a building code. LEED certified buildings are built according to the standards of their local jurisdiction and in addition to that, building owners can chose to pursue a LEED certification. This is a rating system that awards points based on the sustainable measures achieved by a building. A comparison of these green building systems highlights their accomplishments in terms of reduced electricity usage, usage of low-impact materials, indoor environmental quality and other innovative features. It was determined that in general IgCC is more holistic, stringent approach to green building. At the same time the LEED rating system a wider variety of green building options. In addition, building data from LEED certified buildings was complied and analyzed to understand important trends. Both of these methods are progressing towards low-impact, efficient infrastructure and a side-by-side comparison, as done in this research, shed light on the strengths and weaknesses of each method, allowing for future improvements.
ContributorsCampbell, Kaleigh Ruth (Author) / Chong, Oswald (Thesis director) / Parrish, Kristen (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135232-Thumbnail Image.png
Description
Course-Based Undergraduate Research Experiences, or CUREs have become an increasingly popular way to integrate research opportunities into the undergraduate biology curriculum. Unlike traditional cookbook labs which provide students with a set experimental design and known outcome, CUREs offer students the opportunity to participate in novel and interesting research that is

Course-Based Undergraduate Research Experiences, or CUREs have become an increasingly popular way to integrate research opportunities into the undergraduate biology curriculum. Unlike traditional cookbook labs which provide students with a set experimental design and known outcome, CUREs offer students the opportunity to participate in novel and interesting research that is of interest to the greater biology community. While CUREs have been championed as a way to provide more students with the opportunity to experience, it is unclear whether students benefit differently from participating in different CURE with different structural elements. In this study we focused in on one proposed element of a CURE, collaboration, to determine whether student's perception of this concept change over the course of a CURE and whether it differs among students enrolled in different CUREs. We analyzed pre and post open-ended surveys asking the question "Why might collaboration be important in science?" in two CUREs with different structures of collaboration. We also compared CURE student responses to the responses of senior honors thesis students who had been conducting authentic research. Five themes emerged in response to students' conceptions of collaboration. Comparing two CURE courses, we found that students' conceptions of collaboration were varied within each individual CURE, as well as what students were leaving with compared to the other CURE course. Looking at how student responses compared between 5 different themes, including "Different Perspectives", "Validate/Verify Results", "Compare Results", "Requires Different Expertise", and "Compare results", students appeared to be thinking about collaboration in distinct different ways by lack of continuity in the amount of students discussing each of these among the classes. In addition, we found that student responses in each of the CURE courses were not significantly different for any of the themes except "Different Expertise" compared to the graduating seniors. However, due to the small (n) that the graduating seniors group had, 22, compared to each of the CURE classes composing of 155 and 98 students, this comparison must be taken in a preliminary manner. Overall, students thought differently about collaboration between different CUREs. Still, a gap filling what it means to "collaborate", and whether the structures of CUREs are effective to portray collaboration are still necessary to fully elaborate on this paper's findings.
ContributorsWassef, Cyril Alexander (Author) / Brownell, Sara (Thesis director) / Stout, Valerie (Committee member) / Cooper, Katelyn (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05