Matching Items (104)
153321-Thumbnail Image.png
Description
With the projected population growth, the need to produce higher agricultural yield to meet projected demand is hindered by water scarcity. Out of many the approaches that could be implemented to meet the water gap, intensification of agriculture through adoption of advanced agricultural irrigation techniques is the focus for this

With the projected population growth, the need to produce higher agricultural yield to meet projected demand is hindered by water scarcity. Out of many the approaches that could be implemented to meet the water gap, intensification of agriculture through adoption of advanced agricultural irrigation techniques is the focus for this research. Current high water consumption by agricultural sector in Arizona is due to historical dominance in the state economy and established water rights. Efficiency gained in agricultural water use in Arizona has the most potential to reduce the overall water consumption. This research studies the agricultural sector and water management of several counties in Arizona (Maricopa, Pinal, and Yuma). Several research approaches are employed: modeling of agricultural technology adoption using replicator dynamics, interview with water managers and farmers, and Arizona water management law and history review. Using systems thinking, the components of the local farming environment are documented through socio-ecological system/robustness lenses. The replicator dynamics model is employed to evaluate possible conditions in which water efficient agricultural irrigation systems proliferate. The evaluation of conditions that promote the shift towards advanced irrigation technology is conducted through a combination of literature review, interview data, and model analysis. Systematic shift from the currently dominant flood irrigation toward a more water efficient irrigation technologies could be attributed to the followings: the increase in advanced irrigation technology yield efficiency; the reduction of advanced irrigation technology implementation and maintenance cost; the change in growing higher value crop; and the change in growing/harvesting time where there is less competition from other states. Insights learned will further the knowledge useful for this arid state's agricultural policy decision making that will both adhere to the water management goals and meet the projected food production and demand gap.
ContributorsBudiyanto, Yoshi (Author) / Muneepeerakul, Rachata (Thesis advisor) / Smith, Karen (Committee member) / Abbott, Joshua (Committee member) / Arizona State University (Publisher)
Created2014
153097-Thumbnail Image.png
Description
This dissertation consists of three substantive chapters. The first substantive chapter investigates the premature harvesting problem in fisheries. Traditionally, yield-per-recruit analysis has been used to both assess and address the premature harvesting of fish stocks. However, the fact that fish size often affects the unit price suggests that this approach

This dissertation consists of three substantive chapters. The first substantive chapter investigates the premature harvesting problem in fisheries. Traditionally, yield-per-recruit analysis has been used to both assess and address the premature harvesting of fish stocks. However, the fact that fish size often affects the unit price suggests that this approach may be inadequate. In this chapter, I first synthesize the conventional yield-per-recruit analysis, and then extend this conventional approach by incorporating a size-price function for a revenue-per-recruit analysis. An optimal control approach is then used to derive a general bioeconomic solution for the optimal harvesting of a short-lived single cohort. This approach prevents economically premature harvesting and provides an "optimal economic yield". By comparing the yield- and revenue-per-recruit management strategies with the bioeconomic management strategy, I am able to test the economic efficiency of the conventional yield-per-recruit approach. This is illustrated with a numerical study. It shows that a bioeconomic strategy can significantly improve economic welfare compared with the yield-per-recruit strategy, particularly in the face of high natural mortality. Nevertheless, I find that harvesting on a revenue-per-recruit basis improves management policy and can generate a rent that is close to that from bioeconomic analysis, in particular when the natural mortality is relatively low.

The second substantive chapter explores the conservation potential of a whale permit market under bounded economic uncertainty. Pro- and anti-whaling stakeholders are concerned about a recently proposed, "cap and trade" system for managing the global harvest of whales. Supporters argue that such an approach represents a novel solution to the current gridlock in international whale management. In addition to ethical objections, opponents worry that uncertainty about demand for whale-based products and the environmental benefits of conservation may make it difficult to predict the outcome of a whale share market. In this study, I use population and economic data for minke whales to examine the potential ecological consequences of the establishment of a whale permit market in Norway under bounded but significant economic uncertainty. A bioeconomic model is developed to evaluate the influence of economic uncertainties associated with pro- and anti- whaling demands on long-run steady state whale population size, harvest, and potential allocation. The results indicate that these economic uncertainties, in particular on the conservation demand side, play an important role in determining the steady state ecological outcome of a whale share market. A key finding is that while a whale share market has the potential to yield a wide range of allocations between conservation and whaling interests - outcomes in which conservationists effectively "buy out" the whaling industry seem most likely.

The third substantive chapter examines the sea lice externality between farmed fisheries and wild fisheries. A central issue in the debate over the effect of fish farming on the wild fisheries is the nature of sea lice population dynamics and the wild juvenile mortality rate induced by sea lice infection. This study develops a bioeconomic model that integrates sea lice population dynamics, fish population dynamics, aquaculture and wild capture salmon fisheries in an optimal control framework. It provides a tool to investigate sea lice control policy from the standpoint both of private aquaculture producers and wild fishery managers by considering the sea lice infection externality between farmed and wild fisheries. Numerical results suggest that the state trajectory paths may be quite different under different management regimes, but approach the same steady state. Although the difference in economic benefits is not significant in the particular case considered due to the low value of the wild fishery, I investigate the possibility of levying a tax on aquaculture production for correcting the sea lice externality generated by fish farms.
ContributorsHuang, Biao (Author) / Abbott, Joshua K (Thesis advisor) / Perrings, Charles (Thesis advisor) / Gerber, Leah R. (Committee member) / Muneepeerakul, Rachata (Committee member) / Schoon, Michael (Committee member) / Arizona State University (Publisher)
Created2014
153114-Thumbnail Image.png
Description
Sustainability requires developing the capacity to manage difficult tradeoffs to advance human livelihoods now and in the future. Decision-makers are recognizing the ecosystem services approach as a useful framework for evaluating tradeoffs associated with environmental change to advance decision-making towards holistic solutions. In this dissertation I conduct an ecosystem services

Sustainability requires developing the capacity to manage difficult tradeoffs to advance human livelihoods now and in the future. Decision-makers are recognizing the ecosystem services approach as a useful framework for evaluating tradeoffs associated with environmental change to advance decision-making towards holistic solutions. In this dissertation I conduct an ecosystem services assessment on the Yongding River Ecological Corridor in Beijing, China. I developed a `10-step approach' to evaluate multiple ecosystem services for public policy. I use the 10-step approach to evaluate five ecosystem services for management from the Yongding Corridor. The Beijing government created lakes and wetlands for five services (human benefits): (1) water storage (groundwater recharge), (2) local climate regulation (cooling), (3) water purification (water quality), (4) dust control (air quality), and (5) landscape aesthetics (leisure, recreation, and economic development).

The Yongding Corridor is meeting the final ecosystem service levels for landscape aesthetics, but the new ecosystems are falling short on meeting final ecosystem service levels for water storage, local climate regulation, water purification, and dust control. I used biophysical models (process-based and empirically-based), field data (biophysical and visitor surveys), and government datasets to create ecological production functions (i.e., regression models). I used the ecological production functions to evaluate how marginal changes in the ecosystems could impact final ecosystem service outcomes. I evaluate potential tradeoffs considering stakeholder needs to recommend synergistic actions for addressing priorities while reducing service shortfalls.
ContributorsWong, Christina P (Author) / Kinzig, Ann P (Thesis advisor) / Lee, Kai N. (Committee member) / Muneepeerakul, Rachata (Committee member) / Ouyang, Zhiyun (Committee member) / Vivoni, Enrique (Committee member) / Arizona State University (Publisher)
Created2014
153018-Thumbnail Image.png
Description
Urban scaling analysis has introduced a new scientific paradigm to the study of cities. With it, the notions of size, heterogeneity and structure have taken a leading role. These notions are assumed to be behind the causes for why cities differ from one another, sometimes wildly. However, the mechanisms by

Urban scaling analysis has introduced a new scientific paradigm to the study of cities. With it, the notions of size, heterogeneity and structure have taken a leading role. These notions are assumed to be behind the causes for why cities differ from one another, sometimes wildly. However, the mechanisms by which size, heterogeneity and structure shape the general statistical patterns that describe urban economic output are still unclear. Given the rapid rate of urbanization around the globe, we need precise and formal mathematical understandings of these matters. In this context, I perform in this dissertation probabilistic, distributional and computational explorations of (i) how the broadness, or narrowness, of the distribution of individual productivities within cities determines what and how we measure urban systemic output, (ii) how urban scaling may be expressed as a statistical statement when urban metrics display strong stochasticity, (iii) how the processes of aggregation constrain the variability of total urban output, and (iv) how the structure of urban skills diversification within cities induces a multiplicative process in the production of urban output.
ContributorsGómez-Liévano, Andrés (Author) / Lobo, Jose (Thesis advisor) / Muneepeerakul, Rachata (Thesis advisor) / Bettencourt, Luis M. A. (Committee member) / Chowell-Puente, Gerardo (Committee member) / Arizona State University (Publisher)
Created2014
151170-Thumbnail Image.png
Description
Cancer claims hundreds of thousands of lives every year in US alone. Finding ways for early detection of cancer onset is crucial for better management and treatment of cancer. Thus, biomarkers especially protein biomarkers, being the functional units which reflect dynamic physiological changes, need to be discovered. Though important, there

Cancer claims hundreds of thousands of lives every year in US alone. Finding ways for early detection of cancer onset is crucial for better management and treatment of cancer. Thus, biomarkers especially protein biomarkers, being the functional units which reflect dynamic physiological changes, need to be discovered. Though important, there are only a few approved protein cancer biomarkers till date. To accelerate this process, fast, comprehensive and affordable assays are required which can be applied to large population studies. For this, these assays should be able to comprehensively characterize and explore the molecular diversity of nominally "single" proteins across populations. This information is usually unavailable with commonly used immunoassays such as ELISA (enzyme linked immunosorbent assay) which either ignore protein microheterogeneity, or are confounded by it. To this end, mass spectrometric immuno assays (MSIA) for three different human plasma proteins have been developed. These proteins viz. IGF-1, hemopexin and tetranectin have been found in reported literature to show correlations with many diseases along with several carcinomas. Developed assays were used to extract entire proteins from plasma samples and subsequently analyzed on mass spectrometric platforms. Matrix assisted laser desorption ionization (MALDI) and electrospray ionization (ESI) mass spectrometric techniques where used due to their availability and suitability for the analysis. This resulted in visibility of different structural forms of these proteins showing their structural micro-heterogeneity which is invisible to commonly used immunoassays. These assays are fast, comprehensive and can be applied in large sample studies to analyze proteins for biomarker discovery.
ContributorsRai, Samita (Author) / Nelson, Randall (Thesis advisor) / Hayes, Mark (Thesis advisor) / Borges, Chad (Committee member) / Ros, Alexandra (Committee member) / Arizona State University (Publisher)
Created2012
154177-Thumbnail Image.png
Description
Efficient separation techniques for organelles and bacteria in the micron- and sub-micron range are required for various analytical challenges. Mitochondria have a wide size range resulting from the sub-populations, some of which may be associated with diseases or aging. However, traditional methods can often not resolve within-species size variations. Strategies

Efficient separation techniques for organelles and bacteria in the micron- and sub-micron range are required for various analytical challenges. Mitochondria have a wide size range resulting from the sub-populations, some of which may be associated with diseases or aging. However, traditional methods can often not resolve within-species size variations. Strategies to separate mitochondrial sub-populations by size are thus needed to study the importance of this organelle in cellular functions. Additionally, challenges also exist in distinguishing the sub-populations of bio-species which differ in the surface charge while possessing similar size, such as Salmonella typhimurium (Salmonella). The surface charge of Salmonella wild-type is altered upon environmental stimulations, influencing the bacterial survival and virulence within the host tissue. Therefore, it is important to explore methods to identify the sub-populations of Salmonella.

This work exploits insulator-based dielectrophoresis (iDEP) for the manipulation of mitochondria and Salmonella. The iDEP migration and trapping of mitochondria were investigated under both DC and low-frequency AC conditions, establishing that mitochondria exhibit negative DEP. Also, the first realization of size-based iDEP sorting experiments of mitochondria were demonstrated. As for Salmonella, the preliminary study revealed positive DEP behavior. Distinct trapping potential thresholds were found for the sub-populations with different surface charges.

Further, DEP was integrated with a non-intuitive migration mechanism termed absolute negative mobility (ANM), inducing a deterministic trapping component which allows the directed transport of µm- and sub-µm sized (bio)particles in microfluidic devices with a nonlinear post array under the periodic action of electrokinetic and dielectrophoretic forces. Regimes were revealed both numerically and experimentally in which larger particles migrate against the average applied force, whereas smaller particles show normal response. Moreover, this deterministic ANM (dANM) was characterized with polystyrene beads demonstrating improved migration speed at least two orders of magnitude higher compared to previous ANM systems with similar sized colloids. In addition, dANM was induced for mitochondria with an AC-overlaid waveform representing the first demonstration of ANM migration with biological species. Thus, it is envisioned that the efficient size selectivity of this novel migration mechanism can be employed in nanotechnology, organelle sub-population studies or fractionating protein nanocrystals.
ContributorsLuo, Jinghui (Author) / Ros, Alexandra (Thesis advisor) / Hayes, Mark (Committee member) / Borges, Chad (Committee member) / Arizona State University (Publisher)
Created2015
153897-Thumbnail Image.png
Description
Perceptions of climate variability and change reflect local concerns and the actual impacts of climate phenomena on people's lives. Perceptions are the bases of people's decisions to act, and they determine what adaptive measures will be taken. But perceptions of climate may not always be aligned with scientific observations because

Perceptions of climate variability and change reflect local concerns and the actual impacts of climate phenomena on people's lives. Perceptions are the bases of people's decisions to act, and they determine what adaptive measures will be taken. But perceptions of climate may not always be aligned with scientific observations because they are influenced by socio-economic and ecological variables. To find sustainability solutions to climate-change challenges, researchers and policy makers need to understand people's perceptions so that they can account for likely responses. Being able to anticipate responses will increase decision-makers' capacities to create policies that support effective adaptation strategies. I analyzed Mexican maize farmers' perceptions of drought variability as a proxy for their perceptions of climate variability and change. I identified the factors that contribute to the perception of changing drought frequency among farmers in the states of Chiapas, Mexico, and Sinaloa. I conducted Chi-square tests and Logit regression analyses using data from a survey of 1092 maize-producing households in the three states. Results showed that indigenous identity, receipt of credits or loans, and maize-type planted were the variables that most strongly influenced perceptions of drought frequency. The results suggest that climate-adaptation policy will need to consider the social and institutional contexts of farmers' decision-making, as well as the agronomic options for smallholders in each state.
ContributorsRodríguez, Natalia (Author) / Eakin, Hallie (Thesis advisor) / Muneepeerakul, Rachata (Thesis advisor) / Manuel-Navarrete, David (Committee member) / Arizona State University (Publisher)
Created2015
156030-Thumbnail Image.png
Description
Cancer is a heterogeneous disease with discrete oncogenic mechanisms. P53 mutation is the most common oncogenic mutation in many cancers including breast cancer. This dissertation focuses on fundamental genetic alterations enforced by p53 mutation as an indirect target. p53 mutation upregulates the mevalonate pathway genes altering cholesterol biosynthesis and prenylation.

Cancer is a heterogeneous disease with discrete oncogenic mechanisms. P53 mutation is the most common oncogenic mutation in many cancers including breast cancer. This dissertation focuses on fundamental genetic alterations enforced by p53 mutation as an indirect target. p53 mutation upregulates the mevalonate pathway genes altering cholesterol biosynthesis and prenylation. Prenylation, a lipid modification, is required for small GTPases signaling cascades. Project 1 demonstrates that prenylation inhibition can specifically target cells harboring p53 mutation resulting in reduced tumor proliferation and migration. Mutating p53 is associated with Ras and RhoA activation and statin prevents this activity by inhibiting prenylation. Ras-related pathway genes were selected from the transcriptomic analysis for evaluating correlation to statin sensitivity. A gene signature of seventeen genes and TP53 genotype (referred to as MPR signature) is generated to predict response to statins. MPR signature is validated through two datasets of drug screening in cell lines. As advancements in targeted gene modification are rising, the CRISPR-Cas9 technology has emerged as a new cancer therapeutic strategy. One of the important risk factors in gene therapy is the immune recognition of the exogenous therapeutic tool, resulting in obstruction of treatment and possibly serious health consequences. Project 2 describes a method development that can potentially improve the safety and efficacy of gene-targeting proteins. A cohort of 155 healthy individuals was screened for pre-existing B cell and T cell immune response to the S. pyogenes Cas9 protein. We detected antibodies against Cas9 in more than 10% of the healthy population and identified two immunodominant T cell epitopes of this protein. A de-immunized Cas9 that maintains the wild-type functionality was engineered by mutating the identified T cell epitopes. The gene signature and method described here have the potential to improve strategies for genome-driven tumor targeting.
ContributorsRoshdi Ferdosi, Shayesteh (Author) / Anderson, Karen S (Thesis advisor) / LaBaer, Joshua (Thesis advisor) / Woodbury, Neel (Committee member) / Borges, Chad (Committee member) / Arizona State University (Publisher)
Created2017
156784-Thumbnail Image.png
Description
Measuring molecular interaction with membrane proteins is critical for understanding cellular functions, validating biomarkers and screening drugs. Despite the importance, developing such a capability has been a difficult challenge, especially for small molecules binding to membrane proteins in their native cellular environment. The current mainstream practice is to isolate membrane

Measuring molecular interaction with membrane proteins is critical for understanding cellular functions, validating biomarkers and screening drugs. Despite the importance, developing such a capability has been a difficult challenge, especially for small molecules binding to membrane proteins in their native cellular environment. The current mainstream practice is to isolate membrane proteins from the cell membranes, which is difficult and often lead to the loss of their native structures and functions. In this thesis, novel detection methods for in situ quantification of molecular interactions with membrane proteins are described.

First, a label-free surface plasmon resonance imaging (SPRi) platform is developed for the in situ detection of the molecular interactions between membrane protein drug target and its specific antibody drug molecule on cell surface. With this method, the binding kinetics of the drug-target interaction is quantified for drug evaluation and the receptor density on the cell surface is also determined.

Second, a label-free mechanically amplification detection method coupled with a microfluidic device is developed for the detection of both large and small molecules on single cells. Using this method, four major types of transmembrane proteins, including glycoproteins, ion channels, G-protein coupled receptors (GPCRs) and tyrosine kinase receptors on single whole cells are studied with their specific drug molecules. The basic principle of this method is established by developing a thermodynamic model to express the binding-induced nanometer-scale cellular deformation in terms of membrane protein density and cellular mechanical properties. Experiments are carried out to validate the model.

Last, by tracking the cell membrane edge deformation, molecular binding induced downstream event – granule exocytosis is measured with a dual-optical imaging system. Using this method, the single granule exocytosis events in single cells are monitored and the temporal-spatial distribution of the granule fusion-induced cell membrane deformation are mapped. Different patterns of granule release are resolved, including multiple release events occurring close in time and position. The label-free cell membrane deformation tracking method was validated with the simultaneous fluorescence recording. And the simultaneous cell membrane deformation detection and fluorescence recording allow the study of the propagation of the granule release-induced membrane deformation along cell surfaces.
ContributorsZhang, Fenni (Author) / Tao, Nongjian (Thesis advisor) / Chae, Junseok (Committee member) / Borges, Chad (Committee member) / Jing, Tianwei (Committee member) / Wang, Shaopeng (Committee member) / Arizona State University (Publisher)
Created2018
156842-Thumbnail Image.png
Description
Most drugs work by binding to receptors on the cell surface. These receptors can then carry the message into the cell and have a wide array of results. However, studying how fast the binding is can be difficult. Current methods involve extracting the receptor and labeling them, but both these

Most drugs work by binding to receptors on the cell surface. These receptors can then carry the message into the cell and have a wide array of results. However, studying how fast the binding is can be difficult. Current methods involve extracting the receptor and labeling them, but both these steps have issues. Previous works found that binding on the cell surface is accompanied with a small change in cell size, generally an increase. They have also developed an algorithm that can track these small changes without a label using a simple bright field microscope. Here, this relationship is further explored by comparing edge tracking results to a more widely used method, surface plasmon resonance. The kinetic constants found from the two methods are in agreement. No corrections or manipulations were needed to create agreement. The Bland-Altman plots shows that the error between the two methods is about 0.009 s-1. This is about the same error between cells, making it a non-dominant source of error.
ContributorsHunt, Ashley (Author) / Tao, Nongjian (Thesis advisor) / Ros, Alexandra (Committee member) / Borges, Chad (Committee member) / Arizona State University (Publisher)
Created2018