Matching Items (50)
Filtering by

Clear all filters

150070-Thumbnail Image.png
Description
This dissertation creates models of past potential vegetation in the Southern Levant during most of the Holocene, from the beginnings of farming through the rise of urbanized civilization (12 to 2.5 ka BP). The time scale encompasses the rise and collapse of the earliest agrarian civilizations in this region. The

This dissertation creates models of past potential vegetation in the Southern Levant during most of the Holocene, from the beginnings of farming through the rise of urbanized civilization (12 to 2.5 ka BP). The time scale encompasses the rise and collapse of the earliest agrarian civilizations in this region. The archaeological record suggests that increases in social complexity were linked to climatic episodes (e.g., favorable climatic conditions coincide with intervals of prosperity or marked social development such as the Neolithic Revolution ca. 11.5 ka BP, the Secondary Products Revolution ca. 6 ka BP, and the Middle Bronze Age ca. 4 ka BP). The opposite can be said about periods of climatic deterioration, when settled villages were abandoned as the inhabitants returned to nomadic or semi nomadic lifestyles (e.g., abandonment of the largest Neolithic farming towns after 8 ka BP and collapse of Bronze Age towns and cities after 3.5 ka BP during the Late Bronze Age). This study develops chronologically refined models of past vegetation from 12 to 2.5 ka BP, at 500 year intervals, using GIS, remote sensing and statistical modeling tools (MAXENT) that derive from species distribution modeling. Plants are sensitive to alterations in their environment and respond accordingly. Because of this, they are valuable indicators of landscape change. An extensive database of historical and field gathered observations was created. Using this database as well as environmental variables that include temperature and precipitation surfaces for the whole study period (also at 500 year intervals), the potential vegetation of the region was modeled. Through this means, a continuous chronology of potential vegetation of the Southern Levantwas built. The produced paleo-vegetation models generally agree with the proxy records. They indicate a gradual decline of forests and expansion of steppe and desert throughout the Holocene, interrupted briefly during the Mid Holocene (ca. 4 ka BP, Middle Bronze Age). They also suggest that during the Early Holocene, forest areas were extensive, spreading into the Northern Negev. The two remaining forested areas in the Northern and Southern Plateau Region in Jordan were also connected during this time. The models also show general agreement with the major cultural developments, with forested areas either expanding or remaining stable during prosperous periods (e.g., Pre Pottery Neolithic and Middle Bronze Age), and significantly contracting during moments of instability (e.g., Late Bronze Age).
ContributorsSoto-Berelov, Mariela (Author) / Fall, Patricia L. (Thesis advisor) / Myint, Soe (Committee member) / Turner, Billie L (Committee member) / Falconer, Steven (Committee member) / Arizona State University (Publisher)
Created2011
152183-Thumbnail Image.png
Description
Two critical limitations for hyperspatial imagery are higher imagery variances and large data sizes. Although object-based analyses with a multi-scale framework for diverse object sizes are the solution, more data sources and large amounts of testing at high costs are required. In this study, I used tree density segmentation as

Two critical limitations for hyperspatial imagery are higher imagery variances and large data sizes. Although object-based analyses with a multi-scale framework for diverse object sizes are the solution, more data sources and large amounts of testing at high costs are required. In this study, I used tree density segmentation as the key element of a three-level hierarchical vegetation framework for reducing those costs, and a three-step procedure was used to evaluate its effects. A two-step procedure, which involved environmental stratifications and the random walker algorithm, was used for tree density segmentation. I determined whether variation in tone and texture could be reduced within environmental strata, and whether tree density segmentations could be labeled by species associations. At the final level, two tree density segmentations were partitioned into smaller subsets using eCognition in order to label individual species or tree stands in two test areas of two tree densities, and the Z values of Moran's I were used to evaluate whether imagery objects have different mean values from near segmentations as a measure of segmentation accuracy. The two-step procedure was able to delineating tree density segments and label species types robustly, compared to previous hierarchical frameworks. However, eCognition was not able to produce detailed, reasonable image objects with optimal scale parameters for species labeling. This hierarchical vegetation framework is applicable for fine-scale, time-series vegetation mapping to develop baseline data for evaluating climate change impacts on vegetation at low cost using widely available data and a personal laptop.
ContributorsLiau, Yan-ting (Author) / Franklin, Janet (Thesis advisor) / Turner, Billie (Committee member) / Myint, Soe (Committee member) / Arizona State University (Publisher)
Created2013
151928-Thumbnail Image.png
Description
Land transformation under conditions of rapid urbanization has significantly altered the structure and functioning of Earth's systems. Land fragmentation, a characteristic of land transformation, is recognized as a primary driving force in the loss of biological diversity worldwide. However, little is known about its implications in complex urban settings where

Land transformation under conditions of rapid urbanization has significantly altered the structure and functioning of Earth's systems. Land fragmentation, a characteristic of land transformation, is recognized as a primary driving force in the loss of biological diversity worldwide. However, little is known about its implications in complex urban settings where interaction with social dynamics is intense. This research asks: How do patterns of land cover and land fragmentation vary over time and space, and what are the socio-ecological drivers and consequences of land transformation in a rapidly growing city? Using Metropolitan Phoenix as a case study, the research links pattern and process relationships between land cover, land fragmentation, and socio-ecological systems in the region. It examines population growth, water provision and institutions as major drivers of land transformation, and the changes in bird biodiversity that result from land transformation. How to manage socio-ecological systems is one of the biggest challenges of moving towards sustainability. This research project provides a deeper understanding of how land transformation affects socio-ecological dynamics in an urban setting. It uses a series of indices to evaluate land cover and fragmentation patterns over the past twenty years, including land patch numbers, contagion, shapes, and diversities. It then generates empirical evidence on the linkages between land cover patterns and ecosystem properties by exploring the drivers and impacts of land cover change. An interdisciplinary approach that integrates social, ecological, and spatial analysis is applied in this research. Findings of the research provide a documented dataset that can help researchers study the relationship between human activities and biotic processes in an urban setting, and contribute to sustainable urban development.
ContributorsZhang, Sainan (Author) / Boone, Christopher G. (Thesis advisor) / York, Abigail M. (Committee member) / Myint, Soe (Committee member) / Arizona State University (Publisher)
Created2013
136109-Thumbnail Image.png
Description
Students across the United States lack the necessary skills to be successful college students in Science, Technology and Math (STEM) majors and as a result post-secondary institutions are developing summer bridge programs to aid in their transition. As they develop these programs, effective theory and approach are critical to developing

Students across the United States lack the necessary skills to be successful college students in Science, Technology and Math (STEM) majors and as a result post-secondary institutions are developing summer bridge programs to aid in their transition. As they develop these programs, effective theory and approach are critical to developing successful programs. Though there are a multitude of theories on successful student development, a focus on self-efficacy is critical. Summer Bridge programs across the country as well as the Bio Bridge summer program at Arizona State University were studied alone and through the lens of Cognitive Self-Efficacy Theory as mentioned in Albert Bandura's "Perceived Self-Efficacy in Cognitive Development and Functioning." Cognitive Self-Efficacy Theory provides a framework for self-efficacy development in academic settings. An analysis of fifteen bridge programs found that a large majority focused on developing academic capabilities and often overlooked development of community and social efficacy. An even larger number failed to focus on personal psychology in managing self-debilitating thought patterns based on published goals. Further, Arizona State University's Bio Bridge program could not be considered successful at developing cognitive self-efficacy or increasing retention as data was inconclusive. However, Bio Bridge was tremendously successful at developing social efficacy and community among participants and faculty. Further research and better evaluative techniques need to be developed to understand the program's effectiveness in cognitive self-efficacy development and retention.
ContributorsTummala, Sailesh Vardhan (Author) / Orchinik, Miles (Thesis director) / Brownell, Sara (Committee member) / Shortlidge, Erin (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136827-Thumbnail Image.png
Description
Collaborative learning has been found to enhance student learning experiences through interaction with peers and instructors in a way that typically does not occur in a traditional lecture course. However, more than half of all collaborative learning structures have failed to last very long after their initial introductions which makes

Collaborative learning has been found to enhance student learning experiences through interaction with peers and instructors in a way that typically does not occur in a traditional lecture course. However, more than half of all collaborative learning structures have failed to last very long after their initial introductions which makes understanding the factors of collaboration that make it successful very important. The purpose of this study was to evaluate collaborative learning in a blended learning course to gauge student perceptions and the factors of collaboration and student demographics that impact that perception. This was done by surveying a sample of students in BIO 282 about their experiences in the BIO 281 course they took previously which was a new introductory Biology course with a blended learning structure. It was found that students agree that collaboration is beneficial as it provides an opportunity to gain additional insight from peers and improve students' understanding of course content. Also, differences in student gender and first generation status have less of an effect on student perceptions of collaboration than differences in academic achievement (grade) bracket.
ContributorsVu, Bethany Thao-Vy (Author) / Stout, Valerie (Thesis director) / Brownell, Sara (Committee member) / Wright, Christian (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-05
136383-Thumbnail Image.png
Description
We, a team of students and faculty in the life sciences at Arizona State University (ASU), currently teach an Introduction to Biology course in a Level 5, or maximum-security unit with the support of the Arizona Department of Corrections and the Prison Education Program at ASU. This course aims to

We, a team of students and faculty in the life sciences at Arizona State University (ASU), currently teach an Introduction to Biology course in a Level 5, or maximum-security unit with the support of the Arizona Department of Corrections and the Prison Education Program at ASU. This course aims to enhance current programs at the unit by offering inmates an opportunity to practice literacy and math skills, while also providing exposure to a new academic field (science, and specifically biology). Numerous studies, including a 2005 study from the Arizona Department of Corrections (ADC), have found that vocational programs, including prison education programs, reduce recidivism rates (ADC 2005, Esperian 2010, Jancic 1988, Steurer et al. 2001, Ubic 2002) and may provide additional benefits such as engagement with a world outside the justice system (Duguid 1992), the opportunity for inmates to revise personal patterns of rejecting education that they may regret, and the ability of inmate parents to deliberately set a good example for their children (Hall and Killacky 2008). Teaching in a maximum security prison unit poses special challenges, which include a prohibition on most outside materials (except paper), severe restrictions on student-teacher and student-student interactions, and the inability to perform any lab exercises except limited computer simulations. Lack of literature discussing theoretical and practical aspects of teaching science in such environment has prompted us to conduct an ongoing study to generate notes and recommendations from this class through the use of surveys, academic evaluation of students' work and ongoing feedback from both teachers and students to inform teaching practices in future science classes in high-security prison units.
ContributorsLarson, Anika Jade (Author) / Mor, Tsafrir (Thesis director) / Brownell, Sara (Committee member) / Lockard, Joe (Committee member) / Barrett, The Honors College (Contributor) / School of Politics and Global Studies (Contributor) / School of Life Sciences (Contributor)
Created2015-05
141392-Thumbnail Image.png
Description

Problem: The prospect that urban heat island (UHI) effects and climate change may increase urban temperatures is a problem for cities that actively promote urban redevelopment and higher densities. One possible UHI mitigation strategy is to plant more trees and other irrigated vegetation to prevent daytime heat storage and facilitate

Problem: The prospect that urban heat island (UHI) effects and climate change may increase urban temperatures is a problem for cities that actively promote urban redevelopment and higher densities. One possible UHI mitigation strategy is to plant more trees and other irrigated vegetation to prevent daytime heat storage and facilitate nighttime cooling, but this requires water resources that are limited in a desert city like Phoenix.

Purpose: We investigated the tradeoffs between water use and nighttime cooling inherent in urban form and land use choices.

Methods: We used a Local-Scale Urban Meteorological Parameterization Scheme (LUMPS) model to examine the variation in temperature and evaporation in 10 census tracts in Phoenix's urban core. After validating results with estimates of outdoor water use based on tract-level city water records and satellite imagery, we used the model to simulate the temperature and water use consequences of implementing three different scenarios.

Results and conclusions: We found that increasing irrigated landscaping lowers nighttime temperatures, but this relationship is not linear; the greatest reductions occur in the least vegetated neighborhoods. A ratio of the change in water use to temperature impact reached a threshold beyond which increased outdoor water use did little to ameliorate UHI effects.

Takeaway for practice: There is no one design and landscape plan capable of addressing increasing UHI and climate effects everywhere. Any one strategy will have inconsistent results if applied across all urban landscape features and may lead to an inefficient allocation of scarce water resources.

Research Support: This work was supported by the National Science Foundation (NSF) under Grant SES-0345945 (Decision Center for a Desert City) and by the City of Phoenix Water Services Department. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of NSF.

ContributorsGober, Patricia (Author) / Brazel, Anthony J. (Author) / Quay, Ray (Author) / Myint, Soe (Author) / Grossman-Clarke, Susanne (Author) / Miller, Adam (Author) / Rossi, Steve (Author)
Created2010-01-04
141393-Thumbnail Image.png
Description

This study addresses a classic sustainability challenge—the tradeoff between water conservation and temperature amelioration in rapidly growing cities, using Phoenix, Arizona and Portland, Oregon as case studies. An urban energy balance model— LUMPS (Local-Scale Urban Meteorological Parameterization Scheme)—is used to represent the tradeoff between outdoor water use and nighttime cooling

This study addresses a classic sustainability challenge—the tradeoff between water conservation and temperature amelioration in rapidly growing cities, using Phoenix, Arizona and Portland, Oregon as case studies. An urban energy balance model— LUMPS (Local-Scale Urban Meteorological Parameterization Scheme)—is used to represent the tradeoff between outdoor water use and nighttime cooling during hot, dry summer months. Tradeoffs were characterized under three scenarios of land use change and three climate-change assumptions. Decreasing vegetation density reduced outdoor water use but sacrificed nighttime cooling. Increasing vegetated surfaces accelerated nighttime cooling, but increased outdoor water use by ~20%. Replacing impervious surfaces with buildings achieved similar improvements in nighttime cooling with minimal increases in outdoor water use; it was the most water-efficient cooling strategy. The fact that nighttime cooling rates and outdoor water use were more sensitive to land use scenarios than climate-change simulations suggested that cities can adapt to a warmer climate by manipulating land use.

ContributorsGober, Patricia (Author) / Middel, Ariane (Author) / Brazel, Anthony J. (Author) / Myint, Soe (Author) / Chang, Heejun (Author) / Duh, Jiunn-Der (Author) / House-Peters, Lily (Author)
Created2013-05-16
132219-Thumbnail Image.png
Description
This thesis contains three chapters, all of which involve using culturally inclusive education to explore the experiences of religious undergraduate biology students. The first chapter is an essay entitled "Toward Culturally Inclusive Undergraduate Biology Education," which describes a literature review performed with the aim of characterizing the landscape of cultural

This thesis contains three chapters, all of which involve using culturally inclusive education to explore the experiences of religious undergraduate biology students. The first chapter is an essay entitled "Toward Culturally Inclusive Undergraduate Biology Education," which describes a literature review performed with the aim of characterizing the landscape of cultural competence and related terms for biology educators and biology education researchers. This chapter highlights the use of 16 different terms related to cultural competence and presents these terms, their definitions, and highlights their similarities and differences. This chapter also identifies gaps in the cultural competence literature, and presents a set of recommendations to support better culturally inclusive interventions in undergraduate science education. The second chapter, entitled "Different Evolution Acceptance Instruments Lead to Different Research Findings," describes a study in which the source of 30 years of conflicting research on the relationship between evolution acceptance and evolution understanding was determined. The results of this study showed that different instruments used to measure evolution acceptance sometimes lead to different research results and conclusions. The final chapter, entitled "Believing That Evolution is Atheistic is Associated with Poor Evolution Education Outcomes Among Religious College Students," describes a study characterizing definitions of evolution that religious undergraduate biology students may hold, and examines the impact that those definitions of evolution have on multiple outcome variables. In this study, we found that among the most religious students, those who thought evolution is atheistic were less accepting of evolution, less comfortable learning evolution, and perceived greater conflict between their personal religious beliefs and evolution than those who thought evolution is agnostic.
ContributorsDunlop, Hayley Marie (Author) / Brownell, Sara (Thesis director) / Collins, James (Committee member) / Barnes, M. Elizabeth (Committee member) / School of Human Evolution & Social Change (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133704-Thumbnail Image.png
Description
In response to a national call within STEM to increase diversity within the sciences, there has been a growth in science education research aimed at increasing participation of underrepresented groups in science, such as women and ethnic/racial minorities. However, an underexplored underrepresented group in science are religious students. Though 82%

In response to a national call within STEM to increase diversity within the sciences, there has been a growth in science education research aimed at increasing participation of underrepresented groups in science, such as women and ethnic/racial minorities. However, an underexplored underrepresented group in science are religious students. Though 82% of the United States population is religiously affiliated, only 52% of scientists are religious (Pew, 2009). Even further, only 32% of biologists are religious, with 25% identifying as Christian (Pew, 2009; Ecklund, 2007). One reason as to why Christian individuals are underrepresented in biology is because faculty may express biases that affect students' ability to persist in the field of biology. In this study, we explored how revealing a Christian student's religious identity on science graduate application would impact faculty's perception of the student during the biology graduate application process. We found that faculty were significantly more likely to perceive the student who revealed their religious identity to be less competent, hirable, likeable, and faculty would be less likely to mentor the student. Our study informs upon possible reasons as to why there is an underrepresentation of Christians in science. This further suggests that bias against Christians must be addressed in order to avoid real-world, negative treatment of Christians in science.
ContributorsTruong, Jasmine Maylee (Author) / Brownell, Sara (Thesis director) / Gaughan, Monica (Committee member) / Barnes, Liz (Committee member) / School of Life Sciences (Contributor) / W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05