Matching Items (55)
Filtering by

Clear all filters

136399-Thumbnail Image.png
Description
Defines the concept of the arcology as conceived by architect Paolo Soleri. Arcology combines "architecture" and "ecology" and explores a visionary notion of a self-contained urban community that has agricultural, commercial, and residential facilities under one roof. Two real-world examples of these projects are explored: Arcosanti, AZ and Masdar City,

Defines the concept of the arcology as conceived by architect Paolo Soleri. Arcology combines "architecture" and "ecology" and explores a visionary notion of a self-contained urban community that has agricultural, commercial, and residential facilities under one roof. Two real-world examples of these projects are explored: Arcosanti, AZ and Masdar City, Abu Dhabi, UAE. Key aspects of the arcology that could be applied to an existing urban fabric are identified, such as urban design fostering social interaction, reduction of automobile dependency, and a development pattern that combats sprawl. Through interviews with local representatives, a holistic approach to applying arcology concepts to the Phoenix Metro Area is devised.
ContributorsSpencer, Sarah Anne (Author) / Manuel-Navarrete, David (Thesis director) / Salon, Deborah (Committee member) / Barrett, The Honors College (Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / School of Sustainability (Contributor)
Created2015-05
135647-Thumbnail Image.png
Description
Clean water for drinking, food preparation, and bathing is essential for astronaut health and safety during long duration habitation of the International Space Station (ISS), including future missions to Mars. Despite stringent water treatment and recycling efforts on the ISS, it is impossible to completely prevent microbial contamination of onboard

Clean water for drinking, food preparation, and bathing is essential for astronaut health and safety during long duration habitation of the International Space Station (ISS), including future missions to Mars. Despite stringent water treatment and recycling efforts on the ISS, it is impossible to completely prevent microbial contamination of onboard water supplies. In this work, we used a spaceflight analogue culture system to better understand how the microgravity environment can influence the pathogenesis-related characteristics of Burkholderia cepacia complex (Bcc), an opportunistic pathogen previously recovered from the ISS water system. The results of the present study suggest that there may be important differences in how this pathogen can respond and adapt to spaceflight and other low fluid shear environments encountered during their natural life cycles. Future studies are aimed at understanding the underlying mechanisms responsible for these phenotypes.
ContributorsKang, Bianca Younseon (Author) / Nickerson, Cheryl (Thesis director) / Barrila, Jennifer (Committee member) / Ott, Mark (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
131560-Thumbnail Image.png
Description
Spaceflight and spaceflight analogue culture enhance the virulence and pathogenesis-related stress resistance of the foodborne pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium). This is an alarming finding as it suggests that astronauts may have an increased risk of infection during spaceflight. This risk is further exacerbated as multiple studies indicate

Spaceflight and spaceflight analogue culture enhance the virulence and pathogenesis-related stress resistance of the foodborne pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium). This is an alarming finding as it suggests that astronauts may have an increased risk of infection during spaceflight. This risk is further exacerbated as multiple studies indicate that spaceflight negatively impacts aspects of the immune system. In order to ensure astronaut safety during long term missions, it is important to study the phenotypic effects of the microgravity environment on a range of medically important microbial pathogens that might be encountered by the crew. This ground-based study uses the NASA-engineered Rotating Wall Vessel (RWV) bioreactor as a spaceflight analogue culture system to grow bacteria under low fluid shear forces relative to those encountered in microgravity, and interestingly, in the intestinal tract during infection. The culture environment in the RWV is commonly referred to as low shear modeled microgravity (LSMMG). In this study, we characterized the stationary phase stress response of the enteric pathogen, Salmonella enterica serovar Enteritidis (S. Enteritidis), to LSMMG culture. We showed that LSMMG enhanced the resistance of stationary phase cultures of S. Enteritidis to acid and thermal stressors, which differed from the LSSMG stationary phase response of the closely related pathovar, S. Typhimurium. Interestingly, LSMMG increased the ability of both S. Enteritidis and S. Typhimurium to adhere to, invade into, and survive within an in vitro 3-D intestinal co-culture model containing immune cells. Our results indicate that LSMMG regulates pathogenesis-related characteristics of S. Enteritidis in ways that may present an increased health risk to astronauts during spaceflight missions.
ContributorsKoroli, Sara (Author) / Nickerson, Cheryl (Thesis director) / Barrila, Jennifer (Committee member) / Ott, C. Mark (Committee member) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132588-Thumbnail Image.png
Description
This study adds to the literature about residential choice and sustainable transportation. Through the interviews and the personal stories gathered, there was diversity shown in the residential location choice process. We also noticed that “commute” means different things to different households, and that many people did not consider their commute

This study adds to the literature about residential choice and sustainable transportation. Through the interviews and the personal stories gathered, there was diversity shown in the residential location choice process. We also noticed that “commute” means different things to different households, and that many people did not consider their commute to work to be a primary factor determining their final home location. Moreover, many people were willing to increase their commute time, or trade access to desirable amenities for a longer commute. Commuting time to work was one example of the tradeoffs that homeowners make when choosing a home, but there were also others such as architectural type and access to neighborhood amenities. Lastly, time constraints proved to be a very significant factor in the home buying process. Several of our households had such strict time constraints that limited their search to a point of excluding whole areas. Overall, our study sheds light on transportation’s role in residential choice and underscores the complexity of the location choice process.
ContributorsKats, Elyse Nicole (Author) / Salon, Deborah (Thesis director) / Kuminoff, Nicolai (Committee member) / School of Sustainability (Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / School of Community Resources and Development (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133138-Thumbnail Image.png
Description
The International Space Station (ISS) utilizes recycled water for consumption, cleaning and air humidity control. The Environmental Control and Life Support Systems (ECLSS) have been rigorously tested at the NASA Johnson Space Center. Despite the advanced engineering of the water recovery system, bacterial biofilms have been recovered from this potable

The International Space Station (ISS) utilizes recycled water for consumption, cleaning and air humidity control. The Environmental Control and Life Support Systems (ECLSS) have been rigorously tested at the NASA Johnson Space Center. Despite the advanced engineering of the water recovery system, bacterial biofilms have been recovered from this potable water source. Microbial contamination of potable water poses a potential threat to crew members onboard the ISS. Because astronauts have been found to have compromised immune systems, bacterial strains that would not typically be considered a danger must be carefully studied to better understand the mechanisms enabling their survival, including polymicrobial interactions. The need for a more thorough understanding of the effect of spaceflight environment on polymicrobial interactions and potential impact on crew health and vehicle integrity is heightened since 1) several potential pathogens have been isolated from the ISS potable water system, 2) spaceflight has been shown to induce unexpected alterations in microbial responses, and 3) emergent phenotypes are often observed when multiple bacterial species are co- cultured together, as compared to pure cultures of single species. In order to address these concerns, suitable growth media are required that will not only support the isolation of these microbes but also the ability to distinguish between them when grown as mixed cultures. In this study, selective and/or differential media were developed for bacterial isolates collected from the ISS potable water supply. In addition to facilitating discrimination between bacteria, the ideal media for each strain was intended to have a 100% recovery rate compared to traditional R2A media. Antibiotic and reagent susceptibility and resistance tests were conducted for the purpose of developing each individual medium. To study a wide range of targets, 12 antibiotics were selected from seven major classes, including penicillin, cephalosporins, fluoroquinolones, aminoglycosides, glycopeptides/lipoglycopeptides, macrolides/lincosamides/streptogramins, tetracyclines, in addition to seven unclassified antibiotics and three reagents. Once developed, medium efficacy was determined by means of growth curve experiments. The development of these media is a critical step for further research into the mechanisms utilized by these strains to survive the harsh conditions of the ISS water system. Furthermore, with an understanding of the complex nature of these polymicrobial communities, specific contamination targeting and control can be conducted to reduce the risk to crew members. Understanding these microbial species and their susceptibilities has potential application for future NASA human explorations, including those to Mars.
ContributorsKing, Olivia Grace (Author) / Nickerson, Cheryl (Thesis director) / Barrila, Jennifer (Committee member) / Ott, Mark (Committee member) / School of Sustainability (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
132859-Thumbnail Image.png
Description
Since 1979, Phoenix has been organized into 15 theoretically self-contained urban villages in order to manage rapid growth. The major objective of the village plan was to decrease demand for personal vehicle use by internalizing travel to the closest village core, or an adjacent village core, instead of expanding

Since 1979, Phoenix has been organized into 15 theoretically self-contained urban villages in order to manage rapid growth. The major objective of the village plan was to decrease demand for personal vehicle use by internalizing travel to the closest village core, or an adjacent village core, instead of expanding travel to one metropolitan core. Phoenix’s transition from a monocentric urban structure to a more polycentric structure has yet to be studied for its efficacy on this goal of turning personal vehicle travel inward. This paper pairs more conventional measures of automobile dependence, such as, use of alternative modes of transportation in place of private vehicle use and commute times, with more nuanced measures of internal travel between work and home, job housing ratio, and job industry breakdowns to describe Phoenix’s reliance on automobiles. Phoenix’s internal travel ratios were higher when compared to adjacent cities and either on-par or lower when compared to non-adjacent cities that were comparable to Phoenix in population density and size.
ContributorsCuiffo, Kathryn Victoria (Author) / King, David (Thesis director) / Salon, Deborah (Committee member) / Dean, W.P. Carey School of Business (Contributor) / Department of Psychology (Contributor) / Department of Economics (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132173-Thumbnail Image.png
Description
Transit ridership is declining in most cities throughout America. Public transportation needs to be improved in order for cities to handle urban growth, reduce carbon footprint, and increase mobility across income groups. In order to determine what causes changes in transit ridership, I performed a descriptive analysis of five metro

Transit ridership is declining in most cities throughout America. Public transportation needs to be improved in order for cities to handle urban growth, reduce carbon footprint, and increase mobility across income groups. In order to determine what causes changes in transit ridership, I performed a descriptive analysis of five metro areas in the United States. I studied changes in transit ridership in Dallas, Denver, Minneapolis, Phoenix, and Seattle from 2013 through 2017 to determine where public transportation works and where it does not work. I used employment, commute, and demographic data to determine what affects transit ridership. Each metro area was studied as a separate case because the selected cities are difficult to compare directly. The Seattle metro area was the only metro to increase transit ridership throughout the period of the study. The Minneapolis metro area experienced a slight decline in transit ridership, while Phoenix and Denver declined significantly. The Dallas metro area declined most of the five cities studied. The denser metro areas fared much better than the less dense areas. In order to increase transit ridership cities should increase the density of their city and avoid sprawl. Certain factors led to declines in ridership in certain metro areas but not all. For example, gentrification contributed to ridership decline in Denver and Minneapolis, but Seattle gentrified and increased ridership. Dallas and Phoenix experienced low-levels of gentrification but experienced declining ridership. Therefore, organizations such as the American Public Transportation Association (APTA) who attempt to find the single factor causing the decline in transit ridership, or the one factor that will increase ridership are misguided. Above all, this thesis shows that there is no single factor causing the ridership decline in each metro area, and it is wise to study each metro area as a separate case.
ContributorsBarro, Joshua Andrew (Co-author) / Barro, Joshua (Co-author) / King, David (Thesis director) / Salon, Deborah (Committee member) / School of Politics and Global Studies (Contributor) / Walter Cronkite School of Journalism & Mass Comm (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
161939-Thumbnail Image.png
Description
Traditional Reinforcement Learning (RL) assumes to learn policies with respect to reward available from the environment but sometimes learning in a complex domain requires wisdom which comes from a wide range of experience. In behavior based robotics, it is observed that a complex behavior can be described by a combination

Traditional Reinforcement Learning (RL) assumes to learn policies with respect to reward available from the environment but sometimes learning in a complex domain requires wisdom which comes from a wide range of experience. In behavior based robotics, it is observed that a complex behavior can be described by a combination of simpler behaviors. It is tempting to apply similar idea such that simpler behaviors can be combined in a meaningful way to tailor the complex combination. Such an approach would enable faster learning and modular design of behaviors. Complex behaviors can be combined with other behaviors to create even more advanced behaviors resulting in a rich set of possibilities. Similar to RL, combined behavior can keep evolving by interacting with the environment. The requirement of this method is to specify a reasonable set of simple behaviors. In this research, I present an algorithm that aims at combining behavior such that the resulting behavior has characteristics of each individual behavior. This approach has been inspired by behavior based robotics, such as the subsumption architecture and motor schema-based design. The combination algorithm outputs n weights to combine behaviors linearly. The weights are state dependent and change dynamically at every step in an episode. This idea is tested on discrete and continuous environments like OpenAI’s “Lunar Lander” and “Biped Walker”. Results are compared with related domains like Multi-objective RL, Hierarchical RL, Transfer learning, and basic RL. It is observed that the combination of behaviors is a novel way of learning which helps the agent achieve required characteristics. A combination is learned for a given state and so the agent is able to learn faster in an efficient manner compared to other similar approaches. Agent beautifully demonstrates characteristics of multiple behaviors which helps the agent to learn and adapt to the environment. Future directions are also suggested as possible extensions to this research.
ContributorsVora, Kevin Jatin (Author) / Zhang, Yu (Thesis advisor) / Yang, Yezhou (Committee member) / Praharaj, Sarbeswar (Committee member) / Arizona State University (Publisher)
Created2021
171557-Thumbnail Image.png
Description
This dissertation consists of three chapters that investigate the rapid adoption and complex implementation of city commitments to transition to 100% renewable energy (100RE). The first paper uses a two-stage, mixed methods approach to examine 100RE commitments across the US, combining a multivariate regression of demographic, institutional, and policy factors

This dissertation consists of three chapters that investigate the rapid adoption and complex implementation of city commitments to transition to 100% renewable energy (100RE). The first paper uses a two-stage, mixed methods approach to examine 100RE commitments across the US, combining a multivariate regression of demographic, institutional, and policy factors in adoption and six interview-based state case studies to discuss implementation. Adoption of this non-binding commitment progressed rapidly for city councils around the US. Results show that many cities passed 100RE commitments with no implementation plan and minimal understanding of implementation challenges. This analysis highlights that many cities will need new institutions and administrative capacities for successful implementation of these ambitious new policies. While many cities abandoned the commitment soon after adoption, collaboration allowed cities in a few states to break through and pursue implementation, examined further in the next two studies. The second paper is a qualitative case study examining policymaking for the Utah Community Renewable Energy Act. Process tracing methods are used to identify causal factors in enacting this legislation at the state level and complementary resolutions at the local level. This Act was passed through the leadership and financial backing of major cities and committed the investor-owned utility to fulfill any city 100RE resolutions passed through 2019. Finally, the third paper is a mixed-methods, descriptive case study of the benefits of Community Choice Aggregation (CCA) in California, which many cities are using to fulfill their 100RE commitments. Cities have adopted CCAs to increase their local voice in the energy process, while fulfilling climate and energy goals. Overall, this research shows that change in the investor-owned utility electricity system is in fact possible from the city scale, though many cities will need institutional innovation to implement these policies and achieve the change they desire. While cities with greater resources are better positioned to make an impact, smaller cities can collaborate to similarly influence the energy system. Communities are interested in lowering energy costs for customers where possible, but the central motivations in these cases were the pursuit of sustainability and increasing local voice in energy decision-making.
ContributorsKunkel, Leah Christine (Author) / Breetz, Hanna L (Thesis advisor) / Parker, Nathan (Committee member) / Salon, Deborah (Committee member) / Arizona State University (Publisher)
Created2022
189339-Thumbnail Image.png
Description
With rapid advances in technology development and public adoption, it is crucial to understand how these services will shape the future of travel depending on the extent to which people will use these services; impact the transportation and infrastructure systems such as changes in the use of transit and active

With rapid advances in technology development and public adoption, it is crucial to understand how these services will shape the future of travel depending on the extent to which people will use these services; impact the transportation and infrastructure systems such as changes in the use of transit and active modes of travel; and influence how technology developers create and update these transportation technologies to better serve people’s mobility needs. This dissertation explores how two major emerging services, namely ridehailing services and autonomous vehicles (AVs), will be used in the future when they are widely available and vastly used, and how they may impact the transportation infrastructure and societal travel patterns. The four proposed chapters use comprehensive quantitative and qualitative methods to explore the status of these technologies from theory, through robust modeling frameworks, to practice, by investigating the recent AV pilot deployments in real-world settings. In the second chapter, it was found that increased frequency of ridehailing use is significantly associated with a decrease in bus usage, suggesting that ridehailing functions more as a substitute for buses than as a complement and implying that transit agencies should explore ways to incorporate ridehailing services in their plans to enhance transit usage. Next, the third chapter showed that interest in using AVs for running errands had a positive and significant effect on AV ownership intent, even after accounting for a host of variables. The fourth chapter depicted how ridehailing experiences have a considerable effect on the willingness to ride AV-based services in both private and shared modes, suggesting that experience is crucial for future adoption of these services. Then, two recent real-world AV experiences are explored in the fifth chapter. Lessons learned from these experiments reinforced the importance of first-hand experiences in promoting AV awareness and trustworthiness, potentially leading to greater degrees of adoption. Finally, the results and discussions presented in this dissertation strengthen the body of literature on key emerging transportation technologies and inform policymakers and stakeholders to properly prepare cities and the public to welcome these technologies into our transportation system in an efficient, equitable, and complementary way.
ContributorsMagassy, Tassio Bezerra (Author) / Pendyala, Ram M (Thesis advisor) / Khoeini, Sara (Committee member) / Polzin, Steven E (Committee member) / Salon, Deborah (Committee member) / Arizona State University (Publisher)
Created2023