Matching Items (107)
152233-Thumbnail Image.png
Description
Continuous monitoring in the adequate temporal and spatial scale is necessary for a better understanding of environmental variations. But field deployments of molecular biological analysis platforms in that scale are currently hindered because of issues with power, throughput and automation. Currently, such analysis is performed by the collection of large

Continuous monitoring in the adequate temporal and spatial scale is necessary for a better understanding of environmental variations. But field deployments of molecular biological analysis platforms in that scale are currently hindered because of issues with power, throughput and automation. Currently, such analysis is performed by the collection of large sample volumes from over a wide area and transporting them to laboratory testing facilities, which fail to provide any real-time information. This dissertation evaluates the systems currently utilized for in-situ field analyses and the issues hampering the successful deployment of such bioanalytial instruments for environmental applications. The design and development of high throughput, low power, and autonomous Polymerase Chain Reaction (PCR) instruments, amenable for portable field operations capable of providing quantitative results is presented here as part of this dissertation. A number of novel innovations have been reported here as part of this work in microfluidic design, PCR thermocycler design, optical design and systems integration. Emulsion microfluidics in conjunction with fluorinated oils and Teflon tubing have been used for the fluidic module that reduces cross-contamination eliminating the need for disposable components or constant cleaning. A cylindrical heater has been designed with the tubing wrapped around fixed temperature zones enabling continuous operation. Fluorescence excitation and detection have been achieved by using a light emitting diode (LED) as the excitation source and a photomultiplier tube (PMT) as the detector. Real-time quantitative PCR results were obtained by using multi-channel fluorescence excitation and detection using LED, optical fibers and a 64-channel multi-anode PMT for measuring continuous real-time fluorescence. The instrument was evaluated by comparing the results obtained with those obtained from a commercial instrument and found to be comparable. To further improve the design and enhance its field portability, this dissertation also presents a framework for the instrumentation necessary for a portable digital PCR platform to achieve higher throughputs with lower power. Both systems were designed such that it can easily couple with any upstream platform capable of providing nucleic acid for analysis using standard fluidic connections. Consequently, these instruments can be used not only in environmental applications, but portable diagnostics applications as well.
ContributorsRay, Tathagata (Author) / Youngbull, Cody (Thesis advisor) / Goryll, Michael (Thesis advisor) / Blain Christen, Jennifer (Committee member) / Yu, Hongyu (Committee member) / Arizona State University (Publisher)
Created2013
152261-Thumbnail Image.png
Description
Human activity has increased loading of reactive nitrogen (N) in the environment, with important and often deleterious impacts on biodiversity, climate, and human health. Since the fate of N in the ecosystem is mainly controlled by microorganisms, understanding the factors that shape microbial communities becomes relevant and urgent. In arid

Human activity has increased loading of reactive nitrogen (N) in the environment, with important and often deleterious impacts on biodiversity, climate, and human health. Since the fate of N in the ecosystem is mainly controlled by microorganisms, understanding the factors that shape microbial communities becomes relevant and urgent. In arid land soils, these microbial communities and factors are not well understood. I aimed to study the role of N cycling microbes, such as the ammonia-oxidizing bacteria (AOB), the recently discovered ammonia-oxidizing archaea (AOA), and various fungal groups, in soils of arid lands. I also tested if niche differentiation among microbial populations is a driver of differential biogeochemical outcomes. I found that N cycling microbial communities in arid lands are structured by environmental factors to a stronger degree than what is generally observed in mesic systems. For example, in biological soil crusts, temperature selected for AOA in warmer deserts and for AOB in colder deserts. Land-use change also affects niche differentiation, with fungi being the major agents of N2O production in natural arid lands, whereas emissions could be attributed to bacteria in mesic urban lawns. By contrast, NO3- production in the native desert and managed soils was mainly controlled by autotrophic microbes (i.e., AOB and AOA) rather than by heterotrophic fungi. I could also determine that AOA surprisingly responded positively to inorganic N availability in both short (one month) and long-term (seven years) experimental manipulations in an arid land soil, while environmental N enrichment in other ecosystem types is known to favor AOB over AOA. This work improves our predictions of ecosystem response to anthropogenic N increase and shows that paradigms derived from mesic systems are not always applicable to arid lands. My dissertation also highlights the unique ecology of ammonia oxidizers and draws attention to the importance of N cycling in desert soils.
ContributorsMarusenko, Yevgeniy (Author) / Hall, Sharon J (Thesis advisor) / Garcia-Pichel, Ferran (Thesis advisor) / Mclain, Jean E (Committee member) / Schwartz, Egbert (Committee member) / Arizona State University (Publisher)
Created2013
151868-Thumbnail Image.png
Description
Microbial electrochemical cells (MXCs) are promising platforms for bioenergy production from renewable resources. In these systems, specialized anode-respiring bacteria (ARB) deliver electrons from oxidation of organic substrates to the anode of an MXC. While much progress has been made in understanding the microbiology, physiology, and electrochemistry of well-studied model ARB

Microbial electrochemical cells (MXCs) are promising platforms for bioenergy production from renewable resources. In these systems, specialized anode-respiring bacteria (ARB) deliver electrons from oxidation of organic substrates to the anode of an MXC. While much progress has been made in understanding the microbiology, physiology, and electrochemistry of well-studied model ARB such as Geobacter and Shewanella, tremendous potential exists for MXCs as microbiological platforms for exploring novel ARB. This dissertation introduces approaches for selective enrichment and characterization of phototrophic, halophilic, and alkaliphilic ARB. An enrichment scheme based on manipulation of poised anode potential, light, and nutrient availability led to current generation that responded negatively to light. Analysis of phototrophically enriched communities suggested essential roles for green sulfur bacteria and halophilic ARB in electricity generation. Reconstruction of light-responsive current generation could be successfully achieved using cocultures of anode-respiring Geobacter and phototrophic Chlorobium isolated from the MXC enrichments. Experiments lacking exogenously supplied organic electron donors indicated that Geobacter could produce a measurable current from stored photosynthate in the dark. Community analysis of phototrophic enrichments also identified members of the novel genus Geoalkalibacter as potential ARB. Electrochemical characterization of two haloalkaliphilic, non-phototrophic Geoalkalibacter spp. showed that these bacteria were in fact capable of producing high current densities (4-8 A/m2) and using higher organic substrates under saline or alkaline conditions. The success of these selective enrichment approaches and community analyses in identifying and understanding novel ARB capabilities invites further use of MXCs as robust platforms for fundamental microbiological investigations.
ContributorsBadalamenti, Jonathan P (Author) / Krajmalnik-Brown, Rosa (Thesis advisor) / Garcia-Pichel, Ferran (Committee member) / Rittmann, Bruce E. (Committee member) / Torres, César I (Committee member) / Vermaas, Willem (Committee member) / Arizona State University (Publisher)
Created2013
152040-Thumbnail Image.png
Description
"Sensor Decade" has been labeled on the first decade of the 21st century. Similar to the revolution of micro-computer in 1980s, sensor R&D; developed rapidly during the past 20 years. Hard workings were mainly made to minimize the size of devices with optimal the performance. Efforts to develop the small

"Sensor Decade" has been labeled on the first decade of the 21st century. Similar to the revolution of micro-computer in 1980s, sensor R&D; developed rapidly during the past 20 years. Hard workings were mainly made to minimize the size of devices with optimal the performance. Efforts to develop the small size devices are mainly concentrated around Micro-electro-mechanical-system (MEMS) technology. MEMS accelerometers are widely published and used in consumer electronics, such as smart phones, gaming consoles, anti-shake camera and vibration detectors. This study represents liquid-state low frequency micro-accelerometer based on molecular electronic transducer (MET), in which inertial mass is not the only but also the conversion of mechanical movement to electric current signal is the main utilization of the ionic liquid. With silicon-based planar micro-fabrication, the device uses a sub-micron liter electrolyte droplet sealed in oil as the sensing body and a MET electrode arrangement which is the anode-cathode-cathode-anode (ACCA) in parallel as the read-out sensing part. In order to sensing the movement of ionic liquid, an imposed electric potential was applied between the anode and the cathode. The electrode reaction, I_3^-+2e^___3I^-, occurs around the cathode which is reverse at the anodes. Obviously, the current magnitude varies with the concentration of ionic liquid, which will be effected by the movement of liquid droplet as the inertial mass. With such structure, the promising performance of the MET device design is to achieve 10.8 V/G (G=9.81 m/s^2) sensitivity at 20 Hz with the bandwidth from 1 Hz to 50 Hz, and a low noise floor of 100 ug/sqrt(Hz) at 20 Hz.
ContributorsLiang, Mengbing (Author) / Yu, Hongyu (Thesis advisor) / Jiang, Hanqing (Committee member) / Kozicki, Micheal (Committee member) / Arizona State University (Publisher)
Created2013
151997-Thumbnail Image.png
Description
The fluorescence enhancement by a single Noble metal sphere is separated into excitation/absorption enhancement and the emission quantum yield enhancement. Incorporating the classical model of molecular spontaneous emission into the excitation/absorption transition, the excitation enhancement is calculated rigorously by electrodynamics in the frequency domain. The final formula for the excitation

The fluorescence enhancement by a single Noble metal sphere is separated into excitation/absorption enhancement and the emission quantum yield enhancement. Incorporating the classical model of molecular spontaneous emission into the excitation/absorption transition, the excitation enhancement is calculated rigorously by electrodynamics in the frequency domain. The final formula for the excitation enhancement contains two parts: the primary field enhancement calculated from the Mie theory, and a derating factor due to the backscattering field from the molecule. When compared against a simplified model that only involves the primary Mie theory field calculation, this more rigorous model indicates that the excitation enhancement near the surface of the sphere is quenched severely due to the back-scattering field from the molecule. The degree of quenching depends in part on the bandwidth of the illumination because the presence of the sphere induces a red-shift in the absorption frequency of the molecule and at the same time broadens its spectrum. Monochromatic narrow band illumination at the molecule's original (unperturbed) resonant frequency yields large quenching. For the more realistic broadband illumination scenario, we calculate the final enhancement by integrating over the excitation/absorption spectrum. The numerical results indicate that the resonant illumination scenario overestimates the quenching and therefore would underestimate the total excitation enhancement if the illumination has a broader bandwidth than the molecule. Combining the excitation model with the exact Electrodynamical theory for emission, the complete realistic model demonstrates that there is a potential for significant fluorescence enhancement only for the case of a low quantum yield molecule close to the surface of the sphere. General expressions of the fluorescence enhancement for arbitrarily-shaped metal antennas are derived. The finite difference time domain method is utilized for analyzing these complicated antenna structures. We calculate the total excitation enhancement for the two-sphere dimer. Although the enhancement is greater in this case than for the single sphere, because of the derating effects the total enhancement can never reach the local field enhancement. In general, placing molecules very close to a plasmonic antenna surface yields poor enhancement because the local field is strongly affected by the molecular self-interaction with the metal antenna.
ContributorsZhang, Zhe (Author) / Diaz, Rodolfo E (Thesis advisor) / Lim, Derrick (Thesis advisor) / Pan, George (Committee member) / Yu, Hongyu (Committee member) / Arizona State University (Publisher)
Created2013
151290-Thumbnail Image.png
Description
The presence of a number of extinct radionuclides in the early Solar System (SS) is known from geochemical and isotopic studies of meteorites and their components. The half-lives of these isotopes are short relative to the age of the SS, such that they have now decayed to undetectable levels. They

The presence of a number of extinct radionuclides in the early Solar System (SS) is known from geochemical and isotopic studies of meteorites and their components. The half-lives of these isotopes are short relative to the age of the SS, such that they have now decayed to undetectable levels. They can be inferred to exist in the early SS from the presence of their daughter nuclides in meteoritic materials that formed while they were still extant. The extinct radionuclides are particularly useful as fine-scale chronometers for events in the early SS. They can also be used to help constrain the astrophysical setting of the formation of the SS because their short half-lives and unique formation environments yield information about the sources and timing of delivery of material to the protoplanetary disk. Some extinct radionuclides are considered evidence that the Sun interacted with a massive star (supernova) early in its history. The abundance of 60Fe in the early SS is particularly useful for constraining the astrophysical environment of the Sun's formation because, if present in sufficient abundance, its only likely source is injection from a nearby supernova. The initial SS abundance of 60Fe is poorly constrained at the present time, with estimates varying by 1-2 orders of magnitude. I have determined the 60Fe-60Ni isotope systematics of ancient, well-preserved meteorites using high-precision mass spectrometry to better constrain the initial SS abundance of 60Fe. I find identical estimates of the initial 60Fe abundance from both differentiated basaltic meteorites and from components of primitive chondrites formed in the Solar nebula, which suggest a lower 60Fe abundance than other recent estimates. With recent improved meteorite collection efforts there are more rare ungrouped meteorites being found that hold interesting clues to the origin and evolution of early SS objects. I use the 26Al-26Mg extinct radionuclide chronometer to constrain the ages of several recently recovered meteorites that sample previously unknown asteroid lithologies, including the only know felsic meteorite from an asteroid and two other ungrouped basaltic achondrites. These results help broaden our understanding of the timescales involved in igneous differentiation processes in the early SS.
ContributorsSpivak-Birndorf, Lev (Author) / Wadhwa, Meenakshi (Thesis advisor) / Hervig, Richard (Committee member) / Timmes, Francis (Committee member) / Williams, Lynda (Committee member) / Anbar, Ariel (Committee member) / Arizona State University (Publisher)
Created2012
151299-Thumbnail Image.png
Description
Asymptotic and Numerical methods are popular in applied electromagnetism. In this work, the two methods are applied for collimated antennas and calibration targets, respectively. As an asymptotic method, the diffracted Gaussian beam approach (DGBA) is developed for design and simulation of collimated multi-reflector antenna systems, based upon Huygens principle and

Asymptotic and Numerical methods are popular in applied electromagnetism. In this work, the two methods are applied for collimated antennas and calibration targets, respectively. As an asymptotic method, the diffracted Gaussian beam approach (DGBA) is developed for design and simulation of collimated multi-reflector antenna systems, based upon Huygens principle and independent Gaussian beam expansion, referred to as the frames. To simulate a reflector antenna in hundreds to thousands of wavelength, it requires 1E7 - 1E9 independent Gaussian beams. To this end, high performance parallel computing is implemented, based on Message Passing Interface (MPI). The second part of the dissertation includes the plane wave scattering from a target consisting of doubly periodic array of sharp conducting circular cones by the magnetic field integral equation (MFIE) via Coiflet based Galerkin's procedure in conjunction with the Floquet theorem. Owing to the orthogonally, compact support, continuity and smoothness of the Coiflets, well-conditioned impedance matrices are obtained. Majority of the matrix entries are obtained in the spectral domain by one-point quadrature with high precision. For the oscillatory entries, spatial domain computation is applied, bypassing the slow convergence of the spectral summation of the non-damping propagating modes. The simulation results are compared with the solutions from an RWG-MLFMA based commercial software, FEKO, and excellent agreement is observed.
ContributorsWang, Le, 1975- (Author) / Pan, George (Thesis advisor) / Yu, Hongyu (Committee member) / Aberle, James T., 1961- (Committee member) / Diaz, Rodolfo (Committee member) / Kitchen, Jennifer (Committee member) / Arizona State University (Publisher)
Created2012
151565-Thumbnail Image.png
Description
Harsh environments have conditions that make collecting scientific data difficult with existing commercial-off-the-shelf technology. Micro Electro Mechanical Systems (MEMS) technology is ideally suited for harsh environment characterization and operation due to the wide range of materials available and an incredible array of different sensing techniques while providing small device size,

Harsh environments have conditions that make collecting scientific data difficult with existing commercial-off-the-shelf technology. Micro Electro Mechanical Systems (MEMS) technology is ideally suited for harsh environment characterization and operation due to the wide range of materials available and an incredible array of different sensing techniques while providing small device size, low power consumption, and robustness. There were two main objectives of the research conducted. The first objective was to design, fabricate, and test novel sensors that measure the amount of exposure to ionizing radiation for a wide range of applications including characterization of harsh environments. Two types of MEMS ionizing radiation dosimeters were developed. The first sensor was a passive radiation-sensitive capacitor-antenna design. The antenna's emitted frequency of peak-intensity changed as exposure time to radiation increased. The second sensor was a film bulk acoustic-wave resonator, whose resonant frequency decreased with increasing ionizing radiation exposure time. The second objective was to develop MEMS sensor systems that could be deployed to gather scientific data and to use that data to address the following research question: do temperature and/or conductivity predict the appearance of photosynthetic organisms in hot springs. To this end, temperature and electrical conductivity sensor arrays were designed and fabricated based on mature MEMS technology. Electronic circuits and the software interface to the electronics were developed for field data collection. The sensor arrays utilized in the hot springs yielded results that support the hypothesis that temperature plays a key role in determining where the photosynthetic organisms occur. Additionally, a cold-film fluidic flow sensor was developed, which is suitable for near-boiling temperature measurement. Future research should focus on (1) developing a MEMS pH sensor array with integrated temperature, conductivity, and flow sensors to provide multi-dimensional data for scientific study and (2) finding solutions to biofouling and self-calibration, which affects sensor performance over long-term deployment.
ContributorsOiler, Jonathon (Author) / Yu, Hongyu (Thesis advisor) / Anbar, Ariel (Committee member) / Hartnett, Hilairy (Committee member) / Scannapieco, Evan (Committee member) / Timmes, Francis (Committee member) / Arizona State University (Publisher)
Created2013
152644-Thumbnail Image.png
Description
This dissertation is presented in two sections. First, I explore two methods of using stable isotope analysis to trace environmental and biogeochemical processes. Second, I present two related studies investigating student understanding of the biogeochemical concepts that underlie part one. Fe and Hg are each biogeochemically important elements in their

This dissertation is presented in two sections. First, I explore two methods of using stable isotope analysis to trace environmental and biogeochemical processes. Second, I present two related studies investigating student understanding of the biogeochemical concepts that underlie part one. Fe and Hg are each biogeochemically important elements in their own way. Fe is a critical nutrient for phytoplankton, while Hg is detrimental to nearly all forms of life. Fe is often a limiting factor in marine phytoplankton growth. The largest source, by mass, of Fe to the open ocean is windblown mineral dust, but other more soluble sources are more bioavailable. To look for evidence of these non-soil dust sources of Fe to the open ocean, I measured the isotopic composition of aerosol samples collected on Bermuda. I found clear evidence in the fine size fraction of a non-soil dust Fe source, which I conclude is most likely from biomass burning. Widespread adoption of compact fluorescent lamps (CFL) has increased their importance as a source of environmental Hg. Isotope analysis would be a useful tool in quantifying this impact if the isotopic composition of Hg from CFL were known. My measurements show that CFL-Hg is isotopically fractionated, in a unique pattern, during normal operation. This fractionation is large and has a distinctive, mass-independent signature, such that CFL Hg can be uniquely identified from other sources. Misconceptions research in geology has been a very active area of research, but student thinking regarding the related field of biogeochemistry has not yet been studied in detail. From interviews with 40 undergraduates, I identified over 150 specific misconceptions. I also designed a multiple-choice survey (concept inventory) to measure understanding of these same biogeochemistry concepts. I present statistical evidence, based on the Rasch model, for the reliability and validity of this instrument. This instrument will allow teachers and researchers to easily quantify learning outcomes in biogeochemistry and will complement existing concept inventories in geology, chemistry, and biology.
ContributorsMead, Chris (Author) / Anbar, Ariel (Thesis advisor) / Semken, Steven (Committee member) / Shock, Everett (Committee member) / Herckes, Pierre (Committee member) / Hartnett, Hilairy (Committee member) / Arizona State University (Publisher)
Created2014
152492-Thumbnail Image.png
Description
This thesis presents approaches to develop micro seismometers and accelerometers based on molecular electronic transducers (MET) technology using MicroElectroMechanical Systems (MEMS) techniques. MET is a technology applied in seismic instrumentation that proves highly beneficial to planetary seismology. It consists of an electrochemical cell that senses the movement of liquid electrolyte

This thesis presents approaches to develop micro seismometers and accelerometers based on molecular electronic transducers (MET) technology using MicroElectroMechanical Systems (MEMS) techniques. MET is a technology applied in seismic instrumentation that proves highly beneficial to planetary seismology. It consists of an electrochemical cell that senses the movement of liquid electrolyte between electrodes by converting it to the output current. MET seismometers have advantages of high sensitivity, low noise floor, small size, absence of fragile mechanical moving parts and independence on the direction of sensitivity axis. By using MEMS techniques, a micro MET seismometer is developed with inter-electrode spacing close to 1μm, which improves the sensitivity of fabricated device to above 3000 V/(m/s^2) under operating bias of 600 mV and input acceleration of 400 μG (G=9.81m/s^2) at 0.32 Hz. The lowered hydrodynamic resistance by increasing the number of channels improves the self-noise to -127 dB equivalent to 44 nG/√Hz at 1 Hz. An alternative approach to build the sensing element of MEMS MET seismometer using SOI process is also presented in this thesis. The significantly increased number of channels is expected to improve the noise performance. Inspired by the advantages of combining MET and MEMS technologies on the development of seismometer, a low frequency accelerometer utilizing MET technology with post-CMOS-compatible fabrication processes is developed. In the fabricated accelerometer, the complicated fabrication of mass-spring system in solid-state MEMS accelerometer is replaced with a much simpler post-CMOS-compatible process containing only deposition of a four-electrode MET structure on a planar substrate, and a liquid inertia mass of an electrolyte droplet encapsulated by oil film. The fabrication process does not involve focused ion beam milling which is used in the micro MET seismometer fabrication, thus the cost is lowered. Furthermore, the planar structure and the novel idea of using an oil film as the sealing diaphragm eliminate the complicated three-dimensional packaging of the seismometer. The fabricated device achieves 10.8 V/G sensitivity at 20 Hz with nearly flat response over the frequency range from 1 Hz to 50 Hz, and a low noise floor of 75 μG/√Hz at 20 Hz.
ContributorsHuang, Hai (Author) / Yu, Hongyu (Thesis advisor) / Jiang, Hanqing (Committee member) / Dai, Lenore (Committee member) / Si, Jennie (Committee member) / Arizona State University (Publisher)
Created2014