Matching Items (48)
137267-Thumbnail Image.png
Description
It is important to consider factors that contribute to successful fertilization and the development of viable offspring. Better understanding the factors that contribute to infertility can be used to assist in the development of viable offspring, especially for human beings looking to successfully reproduce. Identifying paternal effect genes, genes that

It is important to consider factors that contribute to successful fertilization and the development of viable offspring. Better understanding the factors that contribute to infertility can be used to assist in the development of viable offspring, especially for human beings looking to successfully reproduce. Identifying paternal effect genes, genes that come from the father, introduces more targets that can be manipulated to produce specific reproductive effects. Use of Drosophila melanogaster as a model to study reproduction has increased, in part, due to the use of the GAL4 system. In this system, the GAL4 gene encodes an 881 amino acid protein that binds to the 4-site Upstream Activating Sequence (UAS) to induce transcription of the gene of interest. These sequences constitute the two components of the system: the driver (GAL4) and the responder (gene of interest) \u2014 each of which is maintained as a separate parental line. Effects of the GAL4 driver line "driving" transcription of the responder can be assessed by examining the offspring. One of the more common uses of the GAL4 system involves analyzing phenotypic effects of reducing or eliminating expression of a target gene through the induction of RNAi transcription, which often results in toxicity, lethality, or reduced viability. Utilizing these principles, we strove to demonstrate the effect of knocking down the expression of testis-specific sperm-leucyl-aminopeptidases gene CG13340 on progeny by inducing expression of RNAi with two distinct GAL4 driver lines - one with a nonspecific actin-binding activation sequence and the other with a testis-specific activation sequence. Comparison of both GAL4 driver lines to crosses using N01 wild type ("wt") flies verify that inducing RNAi transcription using the GAL4 system results in reduction of proper offspring development. Further studies using D. melanogaster and the GAL4 system can improve knowledge of factors contributing to male fertility and also be applied to better understand mammalian, specifically human, fertility.
ContributorsEvans, Donna Marie (Author) / Karr, Timothy L. (Thesis director) / Roland, Kenneth (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Department of English (Contributor)
Created2014-05
130412-Thumbnail Image.png
Description
Honey bee workers display remarkable flexibility in the aging process. This plasticity is closely tied to behavioral maturation. Workers who initiate foraging behavior at earlier ages have shorter lifespans, and much of the variation in total lifespan can be explained by differences in pre-foraging lifespan. Vitellogenin (Vg), a yolk precursor

Honey bee workers display remarkable flexibility in the aging process. This plasticity is closely tied to behavioral maturation. Workers who initiate foraging behavior at earlier ages have shorter lifespans, and much of the variation in total lifespan can be explained by differences in pre-foraging lifespan. Vitellogenin (Vg), a yolk precursor protein, influences worker lifespan both as a regulator of behavioral maturation and through anti-oxidant and immune functions. Experimental reduction of Vg mRNA, and thus Vg protein levels, in wild-type bees results in precocious foraging behavior, decreased lifespan, and increased susceptibility to oxidative damage. We sought to separate the effects of Vg on lifespan due to behavioral maturation from those due to immune and antioxidant function using two selected strains of honey bees that differ in their phenotypic responsiveness to Vg gene knockdown. Surprisingly, we found that lifespans lengthen in the strain described as behaviorally and hormonally insensitive to Vg reduction. We then performed targeted gene expression analyses on genes hypothesized to mediate aging and lifespan: the insulin-like peptides (Ilp1 and 2) and manganese superoxide dismutase (mnSOD). The two honey bee Ilps are the most upstream components in the insulin-signaling pathway, which influences lifespan in Drosophila melanogaster and other organisms, while manganese superoxide dismutase encodes an enzyme with antioxidant functions in animals. We found expression differences in the llps in fat body related to behavior (llp1 and 2) and genetic background (Ilp2), but did not find strain by treatment effects. Expression of mnSOD was also affected by behavior and genetic background. Additionally, we observed a differential response to Vg knockdown in fat body expression of mnSOD, suggesting that antioxidant pathways may partially explain the strain-specific lifespan responses to Vg knockdown.
ContributorsIhle, Kate (Author) / Fondrk, M. Kim (Author) / Page, Robert (Author) / Amdam, Gro (Author) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor)
Created2015-01-01
Description
The brain is considered the crux of identity, yet human behavior may be influenced by bacteria in gut microbiomes. Honeybees can exchange bacteria through their many social behaviors, making their microbiomes, and the effect they have on honeybee behavior, of interest. There is recent evidence suggesting the presence of bacteria

The brain is considered the crux of identity, yet human behavior may be influenced by bacteria in gut microbiomes. Honeybees can exchange bacteria through their many social behaviors, making their microbiomes, and the effect they have on honeybee behavior, of interest. There is recent evidence suggesting the presence of bacteria existing in human brains, which can be investigated in honeybee brains due to their well-documented structure. The purpose of this study is to establish if lipopolysaccharide—a molecule on bacteria membranes—is present in the honeybee brain and if it colocalizes with vitellogenin—an immune mediator. Additionally, this study also seeks to establish the efficacy of embedding tissue samples in resin and performing immunohistochemistry for vitellogenin and lipopolysaccharide on sections.
ContributorsStrange, Amalie Sofie (Co-author) / Strange, Amalie (Co-author) / Amdam, Gro (Thesis director) / Baluch, Page (Committee member) / School of International Letters and Cultures (Contributor) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131560-Thumbnail Image.png
Description
Spaceflight and spaceflight analogue culture enhance the virulence and pathogenesis-related stress resistance of the foodborne pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium). This is an alarming finding as it suggests that astronauts may have an increased risk of infection during spaceflight. This risk is further exacerbated as multiple studies indicate

Spaceflight and spaceflight analogue culture enhance the virulence and pathogenesis-related stress resistance of the foodborne pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium). This is an alarming finding as it suggests that astronauts may have an increased risk of infection during spaceflight. This risk is further exacerbated as multiple studies indicate that spaceflight negatively impacts aspects of the immune system. In order to ensure astronaut safety during long term missions, it is important to study the phenotypic effects of the microgravity environment on a range of medically important microbial pathogens that might be encountered by the crew. This ground-based study uses the NASA-engineered Rotating Wall Vessel (RWV) bioreactor as a spaceflight analogue culture system to grow bacteria under low fluid shear forces relative to those encountered in microgravity, and interestingly, in the intestinal tract during infection. The culture environment in the RWV is commonly referred to as low shear modeled microgravity (LSMMG). In this study, we characterized the stationary phase stress response of the enteric pathogen, Salmonella enterica serovar Enteritidis (S. Enteritidis), to LSMMG culture. We showed that LSMMG enhanced the resistance of stationary phase cultures of S. Enteritidis to acid and thermal stressors, which differed from the LSSMG stationary phase response of the closely related pathovar, S. Typhimurium. Interestingly, LSMMG increased the ability of both S. Enteritidis and S. Typhimurium to adhere to, invade into, and survive within an in vitro 3-D intestinal co-culture model containing immune cells. Our results indicate that LSMMG regulates pathogenesis-related characteristics of S. Enteritidis in ways that may present an increased health risk to astronauts during spaceflight missions.
ContributorsKoroli, Sara (Author) / Nickerson, Cheryl (Thesis director) / Barrila, Jennifer (Committee member) / Ott, C. Mark (Committee member) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
130355-Thumbnail Image.png
Description
Background
The reproductive ground plan hypothesis of social evolution suggests that reproductive controls of a solitary ancestor have been co-opted during social evolution, facilitating the division of labor among social insect workers. Despite substantial empirical support, the generality of this hypothesis is not universally accepted. Thus, we investigated the prediction of

Background
The reproductive ground plan hypothesis of social evolution suggests that reproductive controls of a solitary ancestor have been co-opted during social evolution, facilitating the division of labor among social insect workers. Despite substantial empirical support, the generality of this hypothesis is not universally accepted. Thus, we investigated the prediction of particular genes with pleiotropic effects on ovarian traits and social behavior in worker honey bees as a stringent test of the reproductive ground plan hypothesis. We complemented these tests with a comprehensive genome scan for additional quantitative trait loci (QTL) to gain a better understanding of the genetic architecture of the ovary size of honey bee workers, a morphological trait that is significant for understanding social insect caste evolution and general insect biology.
Results
Back-crossing hybrid European x Africanized honey bee queens to the Africanized parent colony generated two study populations with extraordinarily large worker ovaries. Despite the transgressive ovary phenotypes, several previously mapped QTL for social foraging behavior demonstrated ovary size effects, confirming the prediction of pleiotropic genetic effects on reproductive traits and social behavior. One major QTL for ovary size was detected in each backcross, along with several smaller effects and two QTL for ovary asymmetry. One of the main ovary size QTL coincided with a major QTL for ovary activation, explaining 3/4 of the phenotypic variance, although no simple positive correlation between ovary size and activation was observed.
Conclusions
Our results provide strong support for the reproductive ground plan hypothesis of evolution in study populations that are independent of the genetic stocks that originally led to the formulation of this hypothesis. As predicted, worker ovary size is genetically linked to multiple correlated traits of the complex division of labor in worker honey bees, known as the pollen hoarding syndrome. The genetic architecture of worker ovary size presumably consists of a combination of trait-specific loci and general regulators that affect the whole behavioral syndrome and may even play a role in caste determination. Several promising candidate genes in the QTL intervals await further study to clarify their potential role in social insect evolution and the regulation of insect fertility in general.
ContributorsGraham, Allie M. (Author) / Munday, Michael D. (Author) / Kaftanoglu, Osman (Author) / Page, Robert (Author) / Amdam, Gro (Author) / Rueppell, Olav (Author) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor)
Created2011-04-13
Description
As a biology major, many of my classes have included studying the fundamentals of genetics or investigating the way genetics influence heritability of certain diseases. When I began taking upper-division psychology courses, the genetic factors of psychological disorders became an important part of the material. I was exposed to a

As a biology major, many of my classes have included studying the fundamentals of genetics or investigating the way genetics influence heritability of certain diseases. When I began taking upper-division psychology courses, the genetic factors of psychological disorders became an important part of the material. I was exposed to a new idea: that genes were equally important in studying somatic diseases as they were to psychological disorders. As important as genetics are to psychology, they are not part of the required courses for the major; I found many of my peers in psychology courses did not have a grasp on genetic fundamentals in the same way biology majors did. This was a disconnect that I also found in my own life outside the classroom. Growing up, my mother consistently reminded me to limit my carbs and watch my sugars. Diabetes was very prevalent in my family and I was also at risk. I was repeatedly reminded of my own genes and the risk I faced in having this biological disorder. However, my friend whose father was an alcoholic did not warn her in the same way. While she did know of her father's history, she was not warned of the potential for her to become an alcoholic. While my behavior was altered due to my mother's warning and my own knowledge of the genetic risk of diabetes, I wondered if other people at genetic risk of psychological disorders also altered their behavior. Through my thesis, I hope to answer if students have the same perceived genetic knowledge of psychological diseases as they do for biological ones. In my experience, it is not as well known that psychological disorders have genetic factors. For example, alcohol is commonly used by college students. Alcohol use disorder is present in 16.2% of college aged students and "40-60% of the variance of risk explained by genetic influences." (DSM V, 2013) Compare this to diabetes that has "several common genetic variants that account for about 10% of the total genetic effects," but is much more openly discussed even though it is less genetically linked. (McVay, 2015)This stems from the stigma/taboo surrounding many psychological disorders. If students do know that psychological disorder are genetically influenced, I expect their knowledge to be skewed or inaccurate. As part of a survey, I hope to see how strong they believe the genetic risk of certain diseases are as well as where they gained this knowledge. I hypothesize that only students with a background in psychology will be able to correctly assign the genetic risk of the four presented diseases. Completing this thesis will require in-depth study of the genetic factors, an understanding of the way each disease is perceived and understood by the general population, and a statistical analysis of the survey responses. If the survey data turns out as I expect where students do not have a strong grasp of diseases that could potentially influence their own health, I hope to find a way to educate students on biological and psychological diseases, their genetic risk, and how to speak openly about them.
ContributorsParasher, Nisha (Author) / Amdam, Gro (Thesis director) / Toft, Carolyn Cavaugh (Committee member) / Ostwald, Madeleine (Committee member) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134024-Thumbnail Image.png
Description
Honeybees (Apis mellifera) are pollinators that face multiple challenges during foraging such as fungicides applied to floral sources. Fungicides are chemicals used to inhibit key fungal mechanisms like metabolism, but their effects remain relatively unknown in bees. In addition, studying the maturing bee can help us identify demographics that are

Honeybees (Apis mellifera) are pollinators that face multiple challenges during foraging such as fungicides applied to floral sources. Fungicides are chemicals used to inhibit key fungal mechanisms like metabolism, but their effects remain relatively unknown in bees. In addition, studying the maturing bee can help us identify demographics that are more vulnerable to toxic materials like fungicides. The purpose of this study is test whether maturation and the fungicide Pristine influence the permeability of the blood-brain barrier. Specifically, we use a transportable dye to test how blood brain barrier transporter function responds to toxic insult and how it changes with age. Oral ingestion of Pristine by female workers did not have an effect on blood brain barrier permeability which suggests Pristine may have no or longer term consequences in the bee. However, blood brain barrier permeability changed with the bee's age which could be explained by the regulation of blood brain barrier transporters during natural transitions in hive task or the presence of hemolymph protein filtration
ContributorsPatel, Aamir S. (Author) / Amdam, Gro (Thesis director) / Harrison, Jon (Committee member) / Ozturk, Cahit (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134043-Thumbnail Image.png
Description
Dire wolves have recently risen to fame as a result of the popular television program Game of Thrones, and thus many viewers know dire wolves as the sigil and loyal companions of the Stark house. Far fewer recognize dire wolves by their scientific name, Canis dirus, or understand the population

Dire wolves have recently risen to fame as a result of the popular television program Game of Thrones, and thus many viewers know dire wolves as the sigil and loyal companions of the Stark house. Far fewer recognize dire wolves by their scientific name, Canis dirus, or understand the population history of this ‘fearsome wolf’ species that roamed the Americas until the megafaunal mass extinction event of the Late Pleistocene. Although numerous studies have examined the species using morphological and geographical methods, thus far their results have been either inconclusive or contradictory. Remaining questions include the relationships dire wolves share with other members of the Canis genus and the internal structure of their populations. Advancements in ancient DNA recovery methods may make it possible to study dire wolf specimens at the molecular level for the first time and may therefore prove useful in clarifying the answers to these questions. Eighteen dire wolf specimens were collected from across the United States and subjected to ancient DNA extraction, library preparation, amplification and purification, bait preparation and capture, and next-generation sequencing. There was an average of 76.9 unique reads and 5.73% coverage when mapped to the Canis familiaris reference genome in ultraconserved regions of the mitochondrial genome. The results indicate that endogenous ancient DNA was not successfully recovered and perhaps ancient DNA recovery methods have not advanced to the point of retrieving informative amounts of DNA from particularly old, thermally degraded specimens. Nevertheless, the ever-changing nature of ancient DNA research makes it vital to continually test the limitations of the field and suggests that ancient DNA recovery methods will prove useful in illuminating dire wolf population history at some point in the future.
ContributorsSkerry, Katherine Marie (Author) / Stone, Anne (Thesis director) / Amdam, Gro (Committee member) / Larson, Greger (Committee member) / School of Human Evolution and Social Change (Contributor) / School of Nutrition and Health Promotion (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134156-Thumbnail Image.png
Description
Vitellogenin (vg) is a precursor protein of egg yolk in honeybees, but it is also known to have immunological functions. The purpose of this experiment was to determine the effect of vg on the viral load of deformed wing virus (DWV) in worker honey bees (Apis mellifera). I hypothesized that

Vitellogenin (vg) is a precursor protein of egg yolk in honeybees, but it is also known to have immunological functions. The purpose of this experiment was to determine the effect of vg on the viral load of deformed wing virus (DWV) in worker honey bees (Apis mellifera). I hypothesized that a reduction in vg expression would lead to an increase in the viral load. I collected 180 worker bees and split them into four groups: half the bees were subjected to a vg gene knockdown by injections of double stranded vg RNA, and the rest were injected with green fluorescent protein (gfp) double stranded RNA. Half of each group was thereafter injected with DWV, and half given a sham injection. The rate of mortality in all four groups was higher than expected, leaving only 17 bees total. I dissected these bees' fat bodies and extracted their RNA to test for vg and DWV. PCR results showed that, out of the small group of remaining bees, the levels of vg were not statistically different. Furthermore, both groups of virus-injected bees showed similar viral loads. Because of the high mortality rate bees and the lack of differing levels of vg transcript between experimental and control groups, I could not draw conclusions from these results. The high mortality could be caused by several factors: temperature-induced stress, repeated stress from the two injections, and stress from viral infection. In addition, it is possible that the vg dsRNA batch I used was faulty. This thesis exemplifies that information cannot safely be extracted when loss of sampling units result in a small datasets that do not represent the original sampling population.
ContributorsCrable, Emma Lewis (Author) / Amdam, Gro (Thesis director) / Wang, Ying (Committee member) / Dahan, Romain (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
135150-Thumbnail Image.png
Description
In Apis mellifera, gustatory responsiveness to sucrose is a good indicator of learning ability \u2014 in that individuals with high sucrose responsiveness will typically form faster, longer-lasting associations with conditioned stimulus than individuals with a low sucrose responsiveness. The purpose of this study was to determine whether experience with olfactory

In Apis mellifera, gustatory responsiveness to sucrose is a good indicator of learning ability \u2014 in that individuals with high sucrose responsiveness will typically form faster, longer-lasting associations with conditioned stimulus than individuals with a low sucrose responsiveness. The purpose of this study was to determine whether experience with olfactory conditioning had lasting effects on gustatory responsiveness. Groups were placed in an environment that would facilitate association of an odor to a sucrose reward, tested for retention, then tested for gustatory responsiveness. Control groups underwent the same testing schedule, but were not exposed to odor in the first environment. There was no significant difference in gustatory responsiveness between the two groups. Mann-Whitney tests were used to analyze the results, and though the mean GRS score was lower among the treatment group there was no significant trend, possibly due to small sample sizes.
ContributorsSeemann, J. H. (Author) / Amdam, Gro (Thesis director) / Smith, Brian (Committee member) / Barrett, The Honors College (Contributor)
Created2016-05