Matching Items (82)
149650-Thumbnail Image.png
Description
A synbody is a newly developed protein binding peptide which can be rapidly produced by chemical methods. The advantages of the synbody producing process make it a potential human proteome binding reagent. Most of the synbodies are designed to bind to specific proteins. The peptides incorporated in a synbody are

A synbody is a newly developed protein binding peptide which can be rapidly produced by chemical methods. The advantages of the synbody producing process make it a potential human proteome binding reagent. Most of the synbodies are designed to bind to specific proteins. The peptides incorporated in a synbody are discovered with peptide microarray technology. Nevertheless, the targets for unknown synbodies can also be discovered by searching through a protein mixture. The first part of this thesis mainly focuses on the process of target searching, which was performed with immunoprecipitation assays and mass spectrometry analysis. Proteins are pulled down from the cell lysate by certain synbodies, and then these proteins are identified using mass spectrometry. After excluding non-specific bindings, the interaction between a synbody and its real target(s) can be verified with affinity measurements. As a specific example, the binding between 1-4-KCap synbody and actin was discovered. This result proved the feasibility of the mass spectrometry based method and also suggested that a high throughput synbody discovery platform for the human proteome could be developed. Besides the application of synbody development, the peptide microarray technology can also be used for immunosignatures. The composition of all types of antibodies existing in one's blood is related to an individual's health condition. A method, called immunosignaturing, has been developed for early disease diagnosis based on this principle. CIM10K microarray slides work as a platform for blood antibody detection in immunosignaturing. During the analysis of an immunosignature, the data from these slides needs to be validated by using landing light peptides. The second part of this thesis focuses on the validation of the data. A biotinylated peptide was used as a landing light on the new CIM10K slides. The data was collected in several rounds of tests and indicated that the variation among landing lights was significantly reduced by using the newly prepared biotinylated peptide compared with old peptide mixture. Several suggestions for further landing light improvement are proposed based on the results.
ContributorsSun, Minyao (Author) / Johnston, Stephen Albert (Thesis advisor) / Diehnelt, Chris Wayne (Committee member) / Stafford, Phillip (Committee member) / Arizona State University (Publisher)
Created2011
150070-Thumbnail Image.png
Description
This dissertation creates models of past potential vegetation in the Southern Levant during most of the Holocene, from the beginnings of farming through the rise of urbanized civilization (12 to 2.5 ka BP). The time scale encompasses the rise and collapse of the earliest agrarian civilizations in this region. The

This dissertation creates models of past potential vegetation in the Southern Levant during most of the Holocene, from the beginnings of farming through the rise of urbanized civilization (12 to 2.5 ka BP). The time scale encompasses the rise and collapse of the earliest agrarian civilizations in this region. The archaeological record suggests that increases in social complexity were linked to climatic episodes (e.g., favorable climatic conditions coincide with intervals of prosperity or marked social development such as the Neolithic Revolution ca. 11.5 ka BP, the Secondary Products Revolution ca. 6 ka BP, and the Middle Bronze Age ca. 4 ka BP). The opposite can be said about periods of climatic deterioration, when settled villages were abandoned as the inhabitants returned to nomadic or semi nomadic lifestyles (e.g., abandonment of the largest Neolithic farming towns after 8 ka BP and collapse of Bronze Age towns and cities after 3.5 ka BP during the Late Bronze Age). This study develops chronologically refined models of past vegetation from 12 to 2.5 ka BP, at 500 year intervals, using GIS, remote sensing and statistical modeling tools (MAXENT) that derive from species distribution modeling. Plants are sensitive to alterations in their environment and respond accordingly. Because of this, they are valuable indicators of landscape change. An extensive database of historical and field gathered observations was created. Using this database as well as environmental variables that include temperature and precipitation surfaces for the whole study period (also at 500 year intervals), the potential vegetation of the region was modeled. Through this means, a continuous chronology of potential vegetation of the Southern Levantwas built. The produced paleo-vegetation models generally agree with the proxy records. They indicate a gradual decline of forests and expansion of steppe and desert throughout the Holocene, interrupted briefly during the Mid Holocene (ca. 4 ka BP, Middle Bronze Age). They also suggest that during the Early Holocene, forest areas were extensive, spreading into the Northern Negev. The two remaining forested areas in the Northern and Southern Plateau Region in Jordan were also connected during this time. The models also show general agreement with the major cultural developments, with forested areas either expanding or remaining stable during prosperous periods (e.g., Pre Pottery Neolithic and Middle Bronze Age), and significantly contracting during moments of instability (e.g., Late Bronze Age).
ContributorsSoto-Berelov, Mariela (Author) / Fall, Patricia L. (Thesis advisor) / Myint, Soe (Committee member) / Turner, Billie L (Committee member) / Falconer, Steven (Committee member) / Arizona State University (Publisher)
Created2011
150250-Thumbnail Image.png
Description
Immunosignaturing is a new immunodiagnostic technology that uses random-sequence peptide microarrays to profile the humoral immune response. Though the peptides have little sequence homology to any known protein, binding of serum antibodies may be detected, and the pattern correlated to disease states. The aim of my dissertation is to analyze

Immunosignaturing is a new immunodiagnostic technology that uses random-sequence peptide microarrays to profile the humoral immune response. Though the peptides have little sequence homology to any known protein, binding of serum antibodies may be detected, and the pattern correlated to disease states. The aim of my dissertation is to analyze the factors affecting the binding patterns using monoclonal antibodies and determine how much information may be extracted from the sequences. Specifically, I examined the effects of antibody concentration, competition, peptide density, and antibody valence. Peptide binding could be detected at the low concentrations relevant to immunosignaturing, and a monoclonal's signature could even be detected in the presences of 100 fold excess naive IgG. I also found that peptide density was important, but this effect was not due to bivalent binding. Next, I examined in more detail how a polyreactive antibody binds to the random sequence peptides compared to protein sequence derived peptides, and found that it bound to many peptides from both sets, but with low apparent affinity. An in depth look at how the peptide physicochemical properties and sequence complexity revealed that there were some correlations with properties, but they were generally small and varied greatly between antibodies. However, on a limited diversity but larger peptide library, I found that sequence complexity was important for antibody binding. The redundancy on that library did enable the identification of specific sub-sequences recognized by an antibody. The current immunosignaturing platform has little repetition of sub-sequences, so I evaluated several methods to infer antibody epitopes. I found two methods that had modest prediction accuracy, and I developed a software application called GuiTope to facilitate the epitope prediction analysis. None of the methods had sufficient accuracy to identify an unknown antigen from a database. In conclusion, the characteristics of the immunosignaturing platform observed through monoclonal antibody experiments demonstrate its promise as a new diagnostic technology. However, a major limitation is the difficulty in connecting the signature back to the original antigen, though larger peptide libraries could facilitate these predictions.
ContributorsHalperin, Rebecca (Author) / Johnston, Stephen A. (Thesis advisor) / Bordner, Andrew (Committee member) / Taylor, Thomas (Committee member) / Stafford, Phillip (Committee member) / Arizona State University (Publisher)
Created2011
150131-Thumbnail Image.png
Description
African Swine Fever (ASF), endemic in many African countries, is now spreading to other continents. Though ASF is capable of incurring serious economic losses in affected countries, no vaccine exists to provide immunity to animals. Disease control relies largely on rapid diagnosis and the implementation of movement restrictions and strict

African Swine Fever (ASF), endemic in many African countries, is now spreading to other continents. Though ASF is capable of incurring serious economic losses in affected countries, no vaccine exists to provide immunity to animals. Disease control relies largely on rapid diagnosis and the implementation of movement restrictions and strict eradication programs. Developing a scalable, accurate and low cost diagnostic for ASF will be of great help for the current situation. CIM's 10K random peptide microarray is a new high-throughput platform that allows systematic investigations of immune responses associated with disease and shows promise as a diagnostic tool. In this study, this new technology was applied to characterize the immune responses of ASF virus (ASFV) infections and immunizations. Six sets of sera from ASFV antigen immunized pigs, 6 sera from infected pigs and 20 sera samples from unexposed pigs were tested and analyzed statistically. Results show that both ASFV antigen immunized pigs and ASFV viral infected pigs can be distinguished from unexposed pigs. Since it appears that immune responses to other viral infections are also distinguishable on this platform, it holds the potential of being useful in developing a new ASF diagnostic. The ability of this platform to identify specific ASFV antibody epitopes was also explored. A subtle motif was found to be shared among a set of peptides displaying the highest reactivity for an antigen specific antibody. However, this motif does not seem to match with any antibody epitopes predicted by a linear antibody epitope prediction.
ContributorsXiao, Liang (Author) / Sykes, Kathryn (Thesis advisor) / Zhao, Zhan-Gong (Committee member) / Stafford, Phillip (Committee member) / Arizona State University (Publisher)
Created2011
152183-Thumbnail Image.png
Description
Two critical limitations for hyperspatial imagery are higher imagery variances and large data sizes. Although object-based analyses with a multi-scale framework for diverse object sizes are the solution, more data sources and large amounts of testing at high costs are required. In this study, I used tree density segmentation as

Two critical limitations for hyperspatial imagery are higher imagery variances and large data sizes. Although object-based analyses with a multi-scale framework for diverse object sizes are the solution, more data sources and large amounts of testing at high costs are required. In this study, I used tree density segmentation as the key element of a three-level hierarchical vegetation framework for reducing those costs, and a three-step procedure was used to evaluate its effects. A two-step procedure, which involved environmental stratifications and the random walker algorithm, was used for tree density segmentation. I determined whether variation in tone and texture could be reduced within environmental strata, and whether tree density segmentations could be labeled by species associations. At the final level, two tree density segmentations were partitioned into smaller subsets using eCognition in order to label individual species or tree stands in two test areas of two tree densities, and the Z values of Moran's I were used to evaluate whether imagery objects have different mean values from near segmentations as a measure of segmentation accuracy. The two-step procedure was able to delineating tree density segments and label species types robustly, compared to previous hierarchical frameworks. However, eCognition was not able to produce detailed, reasonable image objects with optimal scale parameters for species labeling. This hierarchical vegetation framework is applicable for fine-scale, time-series vegetation mapping to develop baseline data for evaluating climate change impacts on vegetation at low cost using widely available data and a personal laptop.
ContributorsLiau, Yan-ting (Author) / Franklin, Janet (Thesis advisor) / Turner, Billie (Committee member) / Myint, Soe (Committee member) / Arizona State University (Publisher)
Created2013
151928-Thumbnail Image.png
Description
Land transformation under conditions of rapid urbanization has significantly altered the structure and functioning of Earth's systems. Land fragmentation, a characteristic of land transformation, is recognized as a primary driving force in the loss of biological diversity worldwide. However, little is known about its implications in complex urban settings where

Land transformation under conditions of rapid urbanization has significantly altered the structure and functioning of Earth's systems. Land fragmentation, a characteristic of land transformation, is recognized as a primary driving force in the loss of biological diversity worldwide. However, little is known about its implications in complex urban settings where interaction with social dynamics is intense. This research asks: How do patterns of land cover and land fragmentation vary over time and space, and what are the socio-ecological drivers and consequences of land transformation in a rapidly growing city? Using Metropolitan Phoenix as a case study, the research links pattern and process relationships between land cover, land fragmentation, and socio-ecological systems in the region. It examines population growth, water provision and institutions as major drivers of land transformation, and the changes in bird biodiversity that result from land transformation. How to manage socio-ecological systems is one of the biggest challenges of moving towards sustainability. This research project provides a deeper understanding of how land transformation affects socio-ecological dynamics in an urban setting. It uses a series of indices to evaluate land cover and fragmentation patterns over the past twenty years, including land patch numbers, contagion, shapes, and diversities. It then generates empirical evidence on the linkages between land cover patterns and ecosystem properties by exploring the drivers and impacts of land cover change. An interdisciplinary approach that integrates social, ecological, and spatial analysis is applied in this research. Findings of the research provide a documented dataset that can help researchers study the relationship between human activities and biotic processes in an urban setting, and contribute to sustainable urban development.
ContributorsZhang, Sainan (Author) / Boone, Christopher G. (Thesis advisor) / York, Abigail M. (Committee member) / Myint, Soe (Committee member) / Arizona State University (Publisher)
Created2013
150491-Thumbnail Image.png
Description
We propose a novel solution to prevent cancer by developing a prophylactic cancer. Several sources of antigens for cancer vaccines have been published. Among these, antigens that contain a frame-shift (FS) peptide or viral peptide are quite attractive for a variety of reasons. FS sequences, from either mistake in RNA

We propose a novel solution to prevent cancer by developing a prophylactic cancer. Several sources of antigens for cancer vaccines have been published. Among these, antigens that contain a frame-shift (FS) peptide or viral peptide are quite attractive for a variety of reasons. FS sequences, from either mistake in RNA processing or in genomic DNA, may lead to generation of neo-peptides that are foreign to the immune system. Viral peptides presumably would originate from exogenous but integrated viral nucleic acid sequences. Both are non-self, therefore lessen concerns about development of autoimmunity. I have developed a bioinformatical approach to identify these aberrant transcripts in the cancer transcriptome. Their suitability for use in a vaccine is evaluated by establishing their frequencies and predicting possible epitopes along with their population coverage according to the prevalence of major histocompatibility complex (MHC) types. Viral transcripts and transcripts with FS mutations from gene fusion, insertion/deletion at coding microsatellite DNA, and alternative splicing were identified in NCBI Expressed Sequence Tag (EST) database. 48 FS chimeric transcripts were validated in 50 breast cell lines and 68 primary breast tumor samples with their frequencies from 4% to 98% by RT-PCR and sequencing confirmation. These 48 FS peptides, if translated and presented, could be used to protect more than 90% of the population in Northern America based on the prediction of epitopes derived from them. Furthermore, we synthesized 150 peptides that correspond to FS and viral peptides that we predicted would exist in tumor patients and we tested over 200 different cancer patient sera. We found a number of serological reactive peptide sequences in cancer patients that had little to no reactivity in healthy controls; strong support for the strength of our bioinformatic approach. This study describes a process used to identify aberrant transcripts that lead to a new source of antigens that can be tested and used in a prophylactic cancer vaccine. The vast amount of transcriptome data of various cancers from the Cancer Genome Atlas (TCGA) project will enhance our ability to further select better cancer antigen candidates.
ContributorsLee, HoJoon (Author) / Johnston, Stephen A. (Thesis advisor) / Kumar, Sudhir (Committee member) / Miller, Laurence (Committee member) / Stafford, Phillip (Committee member) / Sykes, Kathryn (Committee member) / Arizona State University (Publisher)
Created2012
151234-Thumbnail Image.png
Description
Immunosignaturing is a technology that allows the humoral immune response to be observed through the binding of antibodies to random sequence peptides. The immunosignaturing microarray is based on complex mixtures of antibodies binding to arrays of random sequence peptides in a multiplexed fashion. There are computational and statistical challenges to

Immunosignaturing is a technology that allows the humoral immune response to be observed through the binding of antibodies to random sequence peptides. The immunosignaturing microarray is based on complex mixtures of antibodies binding to arrays of random sequence peptides in a multiplexed fashion. There are computational and statistical challenges to the analysis of immunosignaturing data. The overall aim of my dissertation is to develop novel computational and statistical methods for immunosignaturing data to access its potential for diagnostics and drug discovery. Firstly, I discovered that a classification algorithm Naive Bayes which leverages the biological independence of the probes on our array in such a way as to gather more information outperforms other classification algorithms due to speed and accuracy. Secondly, using this classifier, I then tested the specificity and sensitivity of immunosignaturing platform for its ability to resolve four different diseases (pancreatic cancer, pancreatitis, type 2 diabetes and panIN) that target the same organ (pancreas). These diseases were separated with >90% specificity from controls and from each other. Thirdly, I observed that the immunosignature of type 2 diabetes and cardiovascular complications are unique, consistent, and reproducible and can be separated by 100% accuracy from controls. But when these two complications arise in the same person, the resultant immunosignature is quite different in that of individuals with only one disease. I developed a method to trace back from informative random peptides in disease signatures to the potential antigen(s). Hence, I built a decipher system to trace random peptides in type 1 diabetes immunosignature to known antigens. Immunosignaturing, unlike the ELISA, has the ability to not only detect the presence of response but also absence of response during a disease. I observed, not only higher but also lower peptides intensities can be mapped to antigens in type 1 diabetes. To study immunosignaturing potential for population diagnostics, I studied effect of age, gender and geographical location on immunosignaturing data. For its potential to be a health monitoring technology, I proposed a single metric Coefficient of Variation that has shown potential to change significantly when a person enters a disease state.
ContributorsKukreja, Muskan (Author) / Johnston, Stephen Albert (Thesis advisor) / Stafford, Phillip (Committee member) / Dinu, Valentin (Committee member) / Arizona State University (Publisher)
Created2012
136566-Thumbnail Image.png
Description
Lung cancer is the leading cause of cancer-related deaths in the US. Low-dose computed tomography (LDCT) scans are speculated to reduce lung cancer mortality. However LDCT scans impose multiple risks including false-negative results, false- positive results, overdiagnosis, and cancer due to repeated exposure to radiation. Immunosignaturing is a new method

Lung cancer is the leading cause of cancer-related deaths in the US. Low-dose computed tomography (LDCT) scans are speculated to reduce lung cancer mortality. However LDCT scans impose multiple risks including false-negative results, false- positive results, overdiagnosis, and cancer due to repeated exposure to radiation. Immunosignaturing is a new method proposed to screen and detect lung cancer, eliminating the risks associated with LDCT scans. Known and blinded primary blood sera from participants with lung cancer and no cancer were run on peptide microarrays and analyzed. Immunosignatures for each known sample collectively indicated 120 peptides unique to lung cancer and non-cancer participants. These 120 peptides were used to determine the status of the blinded samples. Verification of the results from Vanderbilt is pending.
ContributorsNguyen, Geneva Trieu (Author) / Woodbury, Neal (Thesis director) / Zhao, Zhan-Gong (Committee member) / Stafford, Phillip (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / Department of Psychology (Contributor)
Created2015-05
135873-Thumbnail Image.png
Description
Cancer remains one of the leading killers throughout the world. Death and disability due to lung cancer in particular accounts for one of the largest global economic burdens a disease presents. The burden on third-world countries is especially large due to the unusually large financial stress that comes from

Cancer remains one of the leading killers throughout the world. Death and disability due to lung cancer in particular accounts for one of the largest global economic burdens a disease presents. The burden on third-world countries is especially large due to the unusually large financial stress that comes from late tumor detection and expensive treatment options. Early detection using inexpensive techniques may relieve much of the burden throughout the world, not just in more developed countries. I examined the immune responses of lung cancer patients using immunosignatures – patterns of reactivity between host serum antibodies and random peptides. Immunosignatures reveal disease-specific patterns that are very reproducible. Immunosignaturing is a chip-based method that has the ability to display the antibody diversity from individual sera sample with low cost. Immunosignaturing is a medical diagnostic test that has many applications in current medical research and in diagnosis. From a previous clinical study, patients diagnosed for lung cancer were tested for their immunosignature vs. healthy non-cancer volunteers. The pattern of reactivity against the random peptides (the ‘immunosignature’) revealed common signals in cancer patients, absent from healthy controls. My study involved the search for common amino acid motifs in the cancer-specific peptides. My search through the hundreds of ‘hits’ revealed certain motifs that were repeated more times than expected by random chance. The amino acids that were the most conserved in each set include tryptophan, aspartic acid, glutamic acid, proline, alanine, serine, and lysine. The most overall conserved amino acid observed between each set was D - aspartic acid. The motifs were short (no more than 5-6 amino acids in a row), but the total number of motifs I identified was large enough to assure significance. I utilized Excel to organize the large peptide sequence libraries, then CLUSTALW to cluster similar-sequence peptides, then GLAM2 to find common themes in groups of peptides. In so doing, I found sequences that were also present in translated cancer expression libraries (RNA) that matched my motifs, suggesting that immunosignatures can find cancer-specific antigens that can be both diagnostic and potentially therapeutic.
ContributorsShiehzadegan, Shima (Author) / Johnston, Stephen (Thesis director) / Stafford, Phillip (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12