Matching Items (48)
Filtering by

Clear all filters

135168-Thumbnail Image.png
Description
How can we change what it means to be a human? Products can be used that will allow for near-instantaneous communication with one’s friends and family wherever they are: and the newest devices do not have to be even carried around, as they can be worn instead. Wearable electronics are

How can we change what it means to be a human? Products can be used that will allow for near-instantaneous communication with one’s friends and family wherever they are: and the newest devices do not have to be even carried around, as they can be worn instead. Wearable electronics are quickly becoming very popular, with 232.0 million wearable devices sold in 2015. This report provides an overview of current and developing wearable devices, investigates the characteristics of the average buyer for these different types of devices. Finally, marketing strategies are suggested. This work was completed in conjunction with a capstone project with Intel, where three objectives were achieved: First, a universal strain tester that could strain samples cyclically in a manner similar to the body was designed. This equipment was especially designed to be flexible in the testing conditions it could be exposed to, so samples could be tested at elevated temperatures or even underwater. Next, dogbone shaped samples for the testing of Young’s Modulus and elongation to failure were produced, and the cut quality of laser, water-jet, and die-cutting was compared in order to select the most defect-free method for reliable testing. Polydimethylsiloxane (PDMS) is a fantastic candidate material for wearable electronics, however there is some discrepancies in the literature—such as from Eleni et. al—about the impact of ultraviolet radiation on the mechanical properties. By conducting accelerated aging tests simulating up to five years exposure to the sun, it was determined that ultraviolet-induced cross-linking of the polymer chains does occur, leading to severe embrittlement (strain to failure reduced from 3.27 to 0.06 in some cases, reduction to approximately 0.21 on average). As simulated tests of possible usage conditions required strains of at least 0.50-0.70, a variety of solutions were suggested to reduce this embrittlement. This project can lead to standardization of wearables electronics testing methods for more reliable predictions about the device behavior, whether that device is a simple pedometer or something that allows the visually impaired to “see”, such as Toyota’s Blaid.
ContributorsNiebroski, Alexander Wayne (Author) / Adams, James (Thesis director) / Anwar, Shahriar (Committee member) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description
A novel approach, the Invariant Based Theory of Composites and the "Trace" method it proposes, has the potential to reduce aerospace composite development times and costs by over 30% thus reinvigorating the development process and encouraging composite technology growth. The "trace" method takes advantage of inherent stiffness properties of laminates,

A novel approach, the Invariant Based Theory of Composites and the "Trace" method it proposes, has the potential to reduce aerospace composite development times and costs by over 30% thus reinvigorating the development process and encouraging composite technology growth. The "trace" method takes advantage of inherent stiffness properties of laminates, specifically carbon fiber, to make predictions of material properties used to derive design allowables. The advantages of the "trace" theory may not necessarily be specific to the aerospace industry, however many automotive manufacturers are facing environmental, social and political pressure to increase the gas mileage in their vehicles and reduce their carbon footprint. Therefore, the use of lighter materials, such as carbon fiber composites, to replace heavier metals in cars is inevitable yet as of now few auto manufacturers implement composites in their cars. The high material, testing and development costs, much like the aerospace industry, have been prohibitive to widespread use of these materials but progress is being made in overcoming those challenges. The "trace" method, while initially intended for quasi-isotropic, aerospace grade carbon-fiber laminates, still yields reasonable, and correctable, results for types of laminates as well such as with woven fabrics and thermoplastic matrices, much of which are being used in these early stages of automotive composite development. Despite the varying use of materials, the "trace" method could potentially boost automotive composites in a similar way to the aerospace industry by reducing testing time and costs and perhaps even playing a role in establishing emerging simulations of these materials.
ContributorsBrown, William Ross (Author) / Adams, James (Thesis director) / Anwar, Shahriar (Committee member) / Krause, Stephen (Committee member) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
154499-Thumbnail Image.png
Description
White organic light emitting diodes (WOLEDs) are currently being developed as the next generation of solid state lighting sources. Although, there has been considerable improvements in device efficiency from the early days up until now, there are still major drawbacks for the implementation of WOLEDs to commercial markets. These drawbacks

White organic light emitting diodes (WOLEDs) are currently being developed as the next generation of solid state lighting sources. Although, there has been considerable improvements in device efficiency from the early days up until now, there are still major drawbacks for the implementation of WOLEDs to commercial markets. These drawbacks include short lifetimes associated with highly efficient and easier to fabricate device structures. Platinum (II) complexes are been explored as emitters for single emissive layer WOLEDs, due to their higher efficiencies and stability in device configurations. These properties have been attributed to their square planar nature. Tetradentate platinum (II) complexes in particular have been shown to be more rigid and thus more stable than their other multidentate counterparts. This thesis aims to explore the different pathways via molecular design of tetradentate platinum II complexes and in particular the percipient engineering of a highly efficient and stable device structure. Previous works have been able to obtain either highly efficient devices or stable devices in different device configurations. In this work, we demonstrate a device structure employing Pt2O2 as the emitter using mCBP as a host with EQE of above 20% and lifetime values (LT80) exceeding 6000hours at practical luminance of 100cd/m2. These results open up the pathway towards the commercialization of white organic light emitting diodes as a solid state lighting source.
ContributorsOloye, Temidayo Abiola (Author) / Li, Jian (Thesis advisor) / Alford, Terry (Committee member) / Adams, James (Committee member) / Arizona State University (Publisher)
Created2016
155413-Thumbnail Image.png
Description
Research and development of organic materials and devices for electronic applications has become an increasingly active area. Display and solid-state lighting are the most mature applications and, and products have been commercially available for several years as of this writing. Significant efforts also focus on materials for organic photovoltaic applications.

Research and development of organic materials and devices for electronic applications has become an increasingly active area. Display and solid-state lighting are the most mature applications and, and products have been commercially available for several years as of this writing. Significant efforts also focus on materials for organic photovoltaic applications. Some of the newest work is in devices for medical, sensor and prosthetic applications.

Worldwide energy demand is increasing as the population grows and the standard of living in developing countries improves. Some studies estimate as much as 20% of annual energy usage is consumed by lighting. Improvements are being made in lightweight, flexible, rugged panels that use organic light emitting diodes (OLEDs), which are particularly useful in developing regions with limited energy availability and harsh environments.

Displays also benefit from more efficient materials as well as the lighter weight and ruggedness enabled by flexible substrates. Displays may require different emission characteristics compared with solid-state lighting. Some display technologies use a white OLED (WOLED) backlight with a color filter, but these are more complex and less efficient than displays that use separate emissive materials that produce the saturated colors needed to reproduce the entire color gamut. Saturated colors require narrow-band emitters. Full-color OLED displays up to and including television size are now commercially available from several suppliers, but research continues to develop more efficient and more stable materials.

This research program investigates several topics relevant to solid-state lighting and display applications. One project is development of a device structure to optimize performance of a new stable Pt-based red emitter developed in Prof Jian Li's group. Another project investigates new Pt-based red, green and blue emitters for lighting applications and compares a red/blue structure with a red/green/blue structure to produce light with high color rendering index. Another part of this work describes the fabrication of a 14.7" diagonal full color active-matrix OLED display on plastic substrate. The backplanes were designed and fabricated in the ASU Flexible Display Center and required significant engineering to develop; a discussion of that process is also included.
ContributorsO'Brien, Barry Patrick (Author) / Li, Jian (Thesis advisor) / Adams, James (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2017
155773-Thumbnail Image.png
Description
Organic optoelectronic devices have drawn extensive attention by over the past two decades. Two major applications for Organic optoelectronic devices are efficient organic photovoltaic devices(OPV) and organic light emitting diodes (OLED). Organic Solar cell has been proven to be compatible with the low cost, large area bulk processing technology and

Organic optoelectronic devices have drawn extensive attention by over the past two decades. Two major applications for Organic optoelectronic devices are efficient organic photovoltaic devices(OPV) and organic light emitting diodes (OLED). Organic Solar cell has been proven to be compatible with the low cost, large area bulk processing technology and processed high absorption efficiencies compared to inorganic solar cells. Organic light emitting diodes are a promising approach for display and solid state lighting applications. To improve the efficiency, stability, and materials variety for organic optoelectronic devices, several emissive materials, absorber-type materials, and charge transporting materials were developed and employed in various device settings. Optical, electrical, and photophysical studies of the organic materials and their corresponding devices were thoroughly carried out. In this thesis, Chapter 1 provides an introduction to the background knowledge of OPV and OLED research fields presented. Chapter 2 discusses new porphyrin derivatives- azatetrabenzylporphyrins for OPV and near infrared OLED applications. A modified synthetic method is utilized to increase the reaction yield of the azatetrabenzylporphyrin materials and their photophysical properties, electrochemical properties are studied. OPV devices are also fabricated using Zinc azatetrabenzylporphyrin as donor materials. Pt(II) azatetrabenzylporphyrin were also synthesized and used in near infra-red OLED to achieve an emission over 800 nm with reasonable external quantum efficiencies. Chapter 3, discusses the synthesis, characterization, and device evaluation of a series of tetradentate platinum and palladium complexesfor single doped white OLED applications and RGB white OLED applications. Devices employing some of the developed emitters demonstrated impressively high external quantum efficiencies within the range of 22%-27% for various emitter concentrations. And the palladium complex, i.e. Pd3O3, enables the fabrication of stable devices achieving nearly 1000h. at 1000cd/m2 without any outcoupling enhancement while simultaneously achieving peak external quantum efficiencies of 19.9%. Chapter 4 discusses tetradentate platinum and palladium complexes as deep blue emissive materials for display and lighting applications. The platinum complex PtNON, achieved a peak external quantum efficiency of 24.4 % and CIE coordinates of (0.18, 0.31) in a device structure designed for charge confinement and the palladium complexes Pd2O2 exhibited peak external quantum efficiency of up to 19.2%.
ContributorsHuang, Liang (Author) / Li, Jian (Thesis advisor) / Adams, James (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2017
155609-Thumbnail Image.png
Description
Organic optoelectronics include a class of devices synthesized from carbon containing ‘small molecule’ thin films without long range order crystalline or polymer structure. Novel properties such as low modulus and flexibility as well as excellent device performance such as photon emission approaching 100% internal quantum efficiency have accelerated research

Organic optoelectronics include a class of devices synthesized from carbon containing ‘small molecule’ thin films without long range order crystalline or polymer structure. Novel properties such as low modulus and flexibility as well as excellent device performance such as photon emission approaching 100% internal quantum efficiency have accelerated research in this area substantially. While optoelectronic organic light emitting devices have already realized commercial application, challenges to obtain extended lifetime for the high energy visible spectrum and the ability to reproduce natural white light with a simple architecture have limited the value of this technology for some display and lighting applications. In this research, novel materials discovered from a systematic analysis of empirical device data are shown to produce high quality white light through combination of monomer and excimer emission from a single molecule: platinum(II) bis(methyl-imidazolyl)toluene chloride (Pt-17). Illumination quality achieved Commission Internationale de L’Éclairage (CIE) chromaticity coordinates (x = 0.31, y = 0.38) and color rendering index (CRI) > 75. Further optimization of a device containing Pt-17 resulted in a maximum forward viewing power efficiency of 37.8 lm/W on a plain glass substrate. In addition, accelerated aging tests suggest high energy blue emission from a halogen-free cyclometalated platinum complex could demonstrate degradation rates comparable to known stable emitters. Finally, a buckling based metrology is applied to characterize the mechanical properties of small molecule organic thin films towards understanding the deposition kinetics responsible for an elastic modulus that is both temperature and thickness dependent. These results could contribute to the viability of organic electronic technology in potentially flexible display and lighting applications. The results also provide insight to organic film growth kinetics responsible for optical, mechanical, and water uptake properties relevant to engineering the next generation of optoelectronic devices.
ContributorsBakken, Nathan (Author) / Li, Jian (Thesis advisor) / Dai, Lenore (Thesis advisor) / Adams, James (Committee member) / Alford, Terry (Committee member) / Lind, Mary (Committee member) / Arizona State University (Publisher)
Created2017
137665-Thumbnail Image.png
Description
The semiconductor industry looks to constantly improve the efficiency of research and development in order to reduce costs and time to market. One such method was designed in order to decrease time spent inducing warpage in integrated circuits in an Intel research process. Intel's Atom product line seeks to compete

The semiconductor industry looks to constantly improve the efficiency of research and development in order to reduce costs and time to market. One such method was designed in order to decrease time spent inducing warpage in integrated circuits in an Intel research process. Intel's Atom product line seeks to compete with ARM architecture by entering the mobile devices CPU market. Due to the fundamental differences between the Atom's Bonnell architecture and the ARM architecture, the Intel Atom product line must utilize such improved research and development methods. Until power consumption is drastically lowered while maintaining processing speed, the Atom product line will not be able to effectively break into the mobile devices CPU market.
ContributorsLandseidel, Jack Adam (Author) / Adams, James (Thesis director) / Krause, Stephen (Committee member) / Anwar, Shahriar (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Materials Science and Engineering Program (Contributor)
Created2013-05
137694-Thumbnail Image.png
Description
The characteristics possessed by undergraduates who have enjoyed success in an intern position are defined. Through an interview process, four traits were identified: multitasking, strong team work understanding, an inquisitive nature, and application of a cross-disciplinary mindset. An exposition of how these four traits are employed to ensure success in

The characteristics possessed by undergraduates who have enjoyed success in an intern position are defined. Through an interview process, four traits were identified: multitasking, strong team work understanding, an inquisitive nature, and application of a cross-disciplinary mindset. An exposition of how these four traits are employed to ensure success in an internship setting is then given. Finally, a personal account of a project with Intel is expounded upon. This project addressed the unoptimized characterization test time of an Intel package quality control process. It improved throughput by developing a parallel testing method by increasing package carrier capacity and utilizing simultaneous testing. The final design led to a 4x increase of throughput rate.
ContributorsHusein, Sebastian Saint Tsei (Author) / Adams, James (Thesis director) / Krause, Stephen (Committee member) / Jarrell, Joseph (Committee member) / Barrett, The Honors College (Contributor) / Materials Science and Engineering Program (Contributor)
Created2013-05
168283-Thumbnail Image.png
Description
Over the past three decades, significant progress in the development of organic light-emitting diodes (OLEDs) has been achieved, enabling OLEDs to become a main component in state-of-the-art displays and next generation solid-state lighting. As this technology advances, it is highly desirable to further improve the device efficiency and operational stability

Over the past three decades, significant progress in the development of organic light-emitting diodes (OLEDs) has been achieved, enabling OLEDs to become a main component in state-of-the-art displays and next generation solid-state lighting. As this technology advances, it is highly desirable to further improve the device efficiency and operational stability to drive the success of OLEDs in future display and lighting applications. This dissertation aims at developing novel organic emitting materials covering visible and near-infrared (NIR) emissions for efficient and table OLEDs. Firstly, a series of tetradentate Pd(II) complexes, which have attractive phosphorescent aggregate emission performance especially at high brightness level in device settings, have been developed. The luminescent lifetime of Pd(II) complex aggregates was demonstrated to be shorter than 1 μs with a close-to-unity photoluminescence quantum yield. Moreover, a systematic study regarding structure-property relationship was conducted on four tetradentate Pd(II) complexes, i.e., Pd3O3, Pd3O8-P, Pd3O8-Py2, and Pd3O8-Py5, featuring aggregate emission. As a result, an extremely efficient and stable OLED device utilizing Pd3O8-Py5 was achieved. It demonstrated a peak external quantum efficiency (EQE) of 37.3% with a reduced efficiency roll-off retaining a high EQE of 32.5% at 10000 cd m-2, and an estimated LT95 lifetime (time to 95% of the initial luminance) of 48246 h at 1000 cd m-2. Secondly, there is an increasing demand for NIR OLEDs with emission spectra beyond 900 nm to expand their applications in biometric authentication, night vision display, and telecommunication, etc. A stable and efficient NIR Pt(II) porphyrin complex named PtTPTNP-F8 was developed, and exhibited an electroluminescent spectrum at 920 nm. By carefully choosing the host materials, an PtTPTNP-F8 based NIR OLED achieved a EQE of 1.9%. Furthermore, an PtTPTNP-F8 OLED fabricated in a stable device structure demonstrated extraordinary operational stability with LT99 of >1000 h at 20 mA cm-2. Lastly, a series of imidazole-based blue Pt(II) complexes were developed and studied. Results indicated that structural modification of ligand molecules effectively tuned the emission spectral wavelength and bandwidth. Two blue complexes, i.e., Pt2O2 P2M and Pt2O2-PPy5-M, emitting at 472 and 476 nm respectively, exhibited narrow-band emission spectra with a full width at half maximum of 16 nm.
ContributorsCao, Linyu (Author) / Li, Jian (Thesis advisor) / Adams, James (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2021
Description

Sulfate deficiency is seen in children with autism through increased urinary excretion of sulfate and low plasma sulfate levels. Potential factors impacting reduced sulfation include phenosulfotransferase activity, sulfate availability, and the presence of the gut toxin p-cresol. Epsom salt baths, vitamin supplementation, and fecal microbiota transplant therapy are all potential

Sulfate deficiency is seen in children with autism through increased urinary excretion of sulfate and low plasma sulfate levels. Potential factors impacting reduced sulfation include phenosulfotransferase activity, sulfate availability, and the presence of the gut toxin p-cresol. Epsom salt baths, vitamin supplementation, and fecal microbiota transplant therapy are all potential treatments with promising results. Sulfate levels have potential for use as a diagnostic biomarker, allowing for earlier diagnosis and intervention.

ContributorsErickson, Payton (Author) / Adams, James (Thesis director) / Krajmalnik-Brown, Rosa (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Historical, Philosophical & Religious Studies, Sch (Contributor) / School of Human Evolution & Social Change (Contributor)
Created2023-05