Matching Items (36)
137696-Thumbnail Image.png
Description
City managers and policy makers are increasing looking to environmental systems to provide beneficial services for urban systems. Constructed wetland systems (CWS), highly managed and designed wetland ecosystems, are being utilized to remove pollution, particularly excess nitrogen (N), from treated wastewater. Various wetland process remove N from effluent, such as

City managers and policy makers are increasing looking to environmental systems to provide beneficial services for urban systems. Constructed wetland systems (CWS), highly managed and designed wetland ecosystems, are being utilized to remove pollution, particularly excess nitrogen (N), from treated wastewater. Various wetland process remove N from effluent, such as denitrification, direct plant uptake, and soil accumulation. Emergent macrophytes provide direct uptake of N and improve conditions for microbially-mediated N processing. The role of different macrophytes species, however, is less understood and has primarily been examined in mesocosm and microcosm experiments and in mesic environments. I examined the effects of community composition on N removal and processing at the whole ecosystem scale in an aridland, constructed wetland (42 ha) through: 1) quantifying above- and belowground biomass and community composition from July 2011 \u2014 November 2012 using a non-destructive allometric technique, and; 2) quantifying macrophyte N content and direct macrophyte N uptake over the 2012 growing season. Average peak biomass in July 2011 & 2012 was 2,930 g dw/m2 and 2,340 g dw/m2, respectively. Typha spp. (Typha domingensis and Typha latifolia) comprised the majority (approximately 2/3) of live aboveground biomass throughout the sampling period. No statistically significant differences were observed in macrophyte N content among the six species present, with an overall average of 1.68% N in aboveground tissues and 1.29% N in belowground tissues. Per unit area of wetland, Typha spp. retained the most N (22 g/m2); total N retained by all species was 34 g/m2. System-wide direct plant N uptake was markedly lower than N input to the system and thus represented a small portion of system N processing. Soil accumulation of N also played a minor role, leaving denitrification as the likely process responsible for the majority of system N processing. Based on a literature review, macrophyte species composition likely influences denitrification through oxygen diffusion into soils and through the quality and quantity of carbon in leaf litter. While this study and the literature indicates Typha spp. may be the best species to promote wetland N processing, other considerations (e.g., bird habitat) and conditions (e.g., type of wastewater being treated) likely make mixed stands of macrophytes preferable in many applications. Additionally, this study demonstrated the importance of urban wetlands as scientific laboratories for scientists of all ages and as excellent stepping-off points for experiments of science-policy discourse.
ContributorsWeller, Nicholas Anton (Author) / Daniel L., Childers (Thesis director) / Grimm, Nancy (Committee member) / Turnbull, Laura (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / School of Public Affairs (Contributor) / Graduate College (Contributor)
Created2013-05
151938-Thumbnail Image.png
Description

Hydrology and biogeochemistry are coupled in all systems. However, human decision-making regarding hydrology and biogeochemistry are often separate, even though decisions about hydrologic systems may have substantial impacts on biogeochemical patterns and processes. The overarching question of this dissertation was: How does hydrologic engineering interact with the effects of nutrient

Hydrology and biogeochemistry are coupled in all systems. However, human decision-making regarding hydrology and biogeochemistry are often separate, even though decisions about hydrologic systems may have substantial impacts on biogeochemical patterns and processes. The overarching question of this dissertation was: How does hydrologic engineering interact with the effects of nutrient loading and climate to drive watershed nutrient yields? I conducted research in two study systems with contrasting spatial and temporal scales. Using a combination of data-mining and modeling approaches, I reconstructed nitrogen and phosphorus budgets for the northeastern US over the 20th century, including anthropogenic nutrient inputs and riverine fluxes, for ~200 watersheds at 5 year time intervals. Infrastructure systems, such as sewers, wastewater treatment plants, and reservoirs, strongly affected the spatial and temporal patterns of nutrient fluxes from northeastern watersheds. At a smaller scale, I investigated the effects of urban stormwater drainage infrastructure on water and nutrient delivery from urban watersheds in Phoenix, AZ. Using a combination of field monitoring and statistical modeling, I tested hypotheses about the importance of hydrologic and biogeochemical control of nutrient delivery. My research suggests that hydrology is the major driver of differences in nutrient fluxes from urban watersheds at the event scale, and that consideration of altered hydrologic networks is critical for understanding anthropogenic impacts on biogeochemical cycles. Overall, I found that human activities affect nutrient transport via multiple pathways. Anthropogenic nutrient additions increase the supply of nutrients available for transport, whereas hydrologic infrastructure controls the delivery of nutrients from watersheds. Incorporating the effects of hydrologic infrastructure is critical for understanding anthropogenic effects on biogeochemical fluxes across spatial and temporal scales.

ContributorsHale, Rebecca Leslie (Author) / Grimm, Nancy (Thesis advisor) / Childers, Daniel (Committee member) / Vivoni, Enrique (Committee member) / York, Abigail (Committee member) / Wu, Jianguo (Committee member) / Arizona State University (Publisher)
Created2013
136208-Thumbnail Image.png
Description
The heterogeneous nature of urban systems is a documented phenomenon that can potentially cause widespread changes in soil characteristics across urban habitat type. These differences in soil characteristics may be linked to hot spots within the city of greenhouse gas (N2O, CO2, CH4) emissions, which have the potential to affect

The heterogeneous nature of urban systems is a documented phenomenon that can potentially cause widespread changes in soil characteristics across urban habitat type. These differences in soil characteristics may be linked to hot spots within the city of greenhouse gas (N2O, CO2, CH4) emissions, which have the potential to affect global climate. The purpose of this study was to take an in depth look at how soil characteristics (i.e. soil moisture, organic matter, and inorganic nitrogen) vary across the urban Phoenix landscape and how these differing landscape characteristics can potentially create hot spots of greenhouse gas emissions. We measured greenhouse gas emissions and soil characteristics from ten different landscape types during the summer and fall of 2013 and included a wetting experiment to simulate flooding events in the desert. Using statistical analyses we found that all soil characteristics varied significantly based on both season and land-use type. In addition, land-use types could be clustered into recognizable groups based on their soil characteristics, with the presence of irrigation being a strong deciding factor in how the groups were arranged. However, N2O emissions did not vary significantly based on season, land-use type, or the presence of a wetting experiment. Patterns reinforce the heterogeneous nature of the Phoenix urban area and suggest that N2O emissions may not relate to soil characteristics and habitat designations (i.e. human land use) in the way that we originally predicted.
ContributorsSampson, Marena Elizabeth (Author) / Grimm, Nancy (Thesis director) / Pollard, Lindsey (Committee member) / Palta, Monica (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
137090-Thumbnail Image.png
Description
This project examines a complex issue in urban ecology: the impact of biodiversity on ecosystem services, and considers how this varies across cities. Data were gathered on multiple economic and ecological parameters for a selection of seven cities around the world and analyzed via multiple linear regression in order to

This project examines a complex issue in urban ecology: the impact of biodiversity on ecosystem services, and considers how this varies across cities. Data were gathered on multiple economic and ecological parameters for a selection of seven cities around the world and analyzed via multiple linear regression in order to assess any relationships that may be at play. Significance values were then calculated to further define the relationships between the data. Analysis found that both biophysical and socioeconomic factors affected ecosystem services, although not all hypotheses regarding these relationships were met. Conclusions indicate that this model was fairly effective in describing physical drivers of ecosystem services, but were not as clear regarding social drivers. Further study regarding social parameters' effect on ecosystem services is recommended.
ContributorsMcDannald, Lindsay JoAnne (Author) / Perrings, Charles (Thesis director) / Kinzig, Ann (Committee member) / Grimm, Nancy (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Sustainability (Contributor)
Created2014-05
141404-Thumbnail Image.png
Description

Field observations were carried out to determine the influence of a park on the urban summer climate in the nearby areas. The possibilities of reduction in air conditioning energy were investigated. Air temperature, relative humidity and other meteorological factors were measured at many locations inside a park and in the

Field observations were carried out to determine the influence of a park on the urban summer climate in the nearby areas. The possibilities of reduction in air conditioning energy were investigated. Air temperature, relative humidity and other meteorological factors were measured at many locations inside a park and in the surrounding areas in the Tama New Town, a city in the west of the Tokyo Metropolitan Area, Japan. The observations indicated that vegetation could significantly alter the climate in the town. At noon, the highest temperature of the ground surface of the grass field in the park was 40.3 °C, which was 19 °C lower than that of the asphalt surface or 15 °C lower than that of the concrete surface in the parking or commercial areas. At the same time, air temperature measured at 1.2 m above the ground at the grass field inside the park was more than 2 °C lower than that measured at the same height in the surrounding commercial and parking areas. Soon after sunset, the temperature of the ground surface at the grass field in the park became lower than that of the air, and the park became a cool island whereas paved asphalt or concrete surfaces in the town remained hotter than the overlying air even late at night. With a size of about 0.6 km2, at noon, the park can reduce by up to 1.5 °C the air temperature in a busy commercial area 1 km downwind. This can lead to a significant decrease of in air conditioning energy in the commercial area.

ContributorsThanh Ca, Vu (Author) / Asaeda, Takashi (Author) / Abu, Eusuf Mohamad (Author)
Created1998-05-27
Description
In Greater Phoenix, urban heat is impacting health, safety, and the economy and these impacts are expected to worsen over time. The number of days above 110˚F are projected to more than double by 2060. In May 2017, The Nature Conservancy, Maricopa County Department of Public Health, Central Arizona Conservation

In Greater Phoenix, urban heat is impacting health, safety, and the economy and these impacts are expected to worsen over time. The number of days above 110˚F are projected to more than double by 2060. In May 2017, The Nature Conservancy, Maricopa County Department of Public Health, Central Arizona Conservation Alliance, Urban Resilience to Extremes Sustainability Research Network, Arizona State University’s Urban Climate Research Center, and Center for Whole Communities launched a participatory Heat Action Planning process to identify both mitigation and adaptation strategies to reduce heat directly and improve the ability of residents to deal with heat. Community-based organizations with existing relationships in three neighborhoods selected for Heat Action Planning later joined the project team: Phoenix Revitalization Corporation, RAILMesa, and Puente Movement. Beyond building a community Heat Action Plan and completing demonstration projects, this participatory process was designed to develop awareness, agency, and social cohesion in underrepresented communities. Furthermore, the Heat Action Planning process was designed to serve as a model for future heat resilience efforts and create a local, contextual, and culturally appropriate vision of a safer, healthier future. The iterative planning and engagement method used by the project team strengthened relationships within and between neighborhoods, community-based organizations, decision-makers, and the core team, and it combined storytelling wisdom and scientific evidence to better understand current and future challenges residents face during extreme heat events.
As a result of three workshops within each community, the residents brought forth ideas that they want to see implemented to increase their thermal comfort and safety during extreme heat days. As depicted below, residents’ ideas intersected around similar concepts, but specific solutions varied across neighborhoods. For example, all neighborhoods would like to add shade to their pedestrian corridors but preferences for the location of shade improvements differed. Some neighborhoods prioritized routes to public transportation, others prioritized routes used by children on their way to school, and others wanted to see shaded rest stops in key places. Four overarching strategic themes emerged across all three neighborhoods: advocate and educate; improve comfort/ability to cope; improve safety; build capacity. These themes signal that there are serious heat safety challenges in residents’ day-to-day lives and that community, business, and decision-making sectors need to address those challenges.
Heat Action Plan elements are designed to be incorporated into other efforts to alleviate heat, to create climate-resilient cities, and to provide public health and safety. Heat Action Plan implementation partners are identified drawing from the Greater Phoenix region, and recommendations are given for supporting the transformation to a cooler city.
To scale this approach, project team members recommend a) continued engagement with and investments into these neighborhoods to implement change signaled by residents as vital, b) repeating the heat action planning process with community leaders in other neighborhoods, and c) working with cities, urban planners, and other stakeholders to institutionalize this process, supporting policies, and the use of proposed metrics for creating cooler communities.
ContributorsNature Conservancy (U.S.) (Contributor)
Created2019
149374-Thumbnail Image.png
Description

River and riparian areas are important foraging habitat for insectivorous bats. Numerous studies have shown that aquatic insects provide an important trophic resource to terrestrial consumers, including bats, and are key in regulating population size and species interactions in terrestrial food webs. Yet these studies have generally ignored how structural

River and riparian areas are important foraging habitat for insectivorous bats. Numerous studies have shown that aquatic insects provide an important trophic resource to terrestrial consumers, including bats, and are key in regulating population size and species interactions in terrestrial food webs. Yet these studies have generally ignored how structural characteristics of the riverine landscape influence trophic resource availability or how terrestrial consumers respond to ensuing spatial and temporal patterns of trophic resources. Moreover, few studies have examined linkages between a stream's hydrologic regime and the timing and magnitude of aquatic insect availability. The main objective of my dissertation is to understand the causes of bat distributions in space and time. Specifically, I examine how trophic resource availability, structural components of riverine landscapes (channel confinement and riparian vegetation structure), and hydrologic regimes (flow permanence and timing of floods) mediate spatial and temporal patterns in bat activity. First, I show that river channel confinement determines bat activity along a river's longitudinal axis (directly above the river), while trophic resources appear to have stronger effects across a river's lateral (with distance from the river) axis. Second, I show that flow intermittency affects bat foraging activity indirectly via its effects on trophic resource availability. Seasonal river drying appears to have complex effects on bat foraging activity, initially causing imperfect tracking by consumers of localized concentrations of resources but later resulting in disappearance of both insects and bats after complete river drying. Third, I show that resource tracking by bats varies among streams with contrasting patterns of trophic resource availability and this variation appears to be in response to differences in the timing of aquatic insect emergence, duration and magnitude of emergence, and adult body size of emergent aquatic insects. Finally, I show that aquatic insects directly influence bat activity along a desert stream and that riparian vegetation composition affects bat activity, but only indirectly, via effects on aquatic insect availability. Overall, my results show river channel confinement, riparian vegetation structure, flow permanence, and the timing of floods influence spatial and temporal patterns in bat distributions; but these effects are indirect by influencing the ability of bats to track trophic resources in space and time.

ContributorsHagen, Elizabeth M (Author) / Sabo, John L (Thesis advisor) / Fisher, Stuart G. (Committee member) / Grimm, Nancy (Committee member) / Schmeeckle, Mark W (Committee member) / Stromberg, Juliet C. (Committee member) / Arizona State University (Publisher)
Created2010
149312-Thumbnail Image.png
Description

The global transport and deposition of anthropogenic nitrogen (N) to downwind ecosystems are significant and continue to increase. Indeed, atmospheric deposition can be a significant source of N to many watersheds, including those in remote, unpopulated areas. Bacterial denitrification in lake sediments may ameliorate the effects of N loading by

The global transport and deposition of anthropogenic nitrogen (N) to downwind ecosystems are significant and continue to increase. Indeed, atmospheric deposition can be a significant source of N to many watersheds, including those in remote, unpopulated areas. Bacterial denitrification in lake sediments may ameliorate the effects of N loading by converting nitrate (NO3-) to N2 gas. Denitrification also produces nitrous oxide (N2O), a potent greenhouse gas. The ecological effects of atmospheric N inputs in terrestrial ecosystems and the pelagic zone of lakes have been well documented; however, similar research in lake sediments is lacking. This project investigates the effects N of deposition on denitrification and N2O production in lakes. Atmospheric N inputs might alter the availability of NO3- and other key resources to denitrifiers. Such altered resources could influence denitrification, N2O production, and the abundance of denitrifying bacteria in sediments. The research contrasts these responses in lakes at the ends of gradients of N deposition in Colorado and Norway. Rates of denitrification and N2O production were elevated in the sediments of lakes subject to anthropogenic N inputs. There was no evidence, however, that N deposition has altered sediment resources or the abundance of denitrifiers. Further investigation into the dynamics of nitric oxide, N2O, and N2 during denitrification found no difference between deposition regions. Regardless of atmospheric N inputs, sediments from lakes in both Norway and Colorado possess considerable capacity to remove NO3- by denitrification. Catchment-specific properties may influence the denitrifying community more strongly than the rate of atmospheric N loading. In this regard, sediments appear to be insulated from the effects of N deposition compared to the water column. Lastly, surface water N2O concentrations were greater in high-deposition lakes compared to low-deposition lakes. To understand the potential magnitude of deposition-induced N2O production, the greenhouse gas inventory methodology of Intergovernmental Panel on Climate Change was applied to available datasets. Estimated emissions from lakes are 7-371 Gg N y-1, suggesting that lakes could be an important source of N2O.

ContributorsMcCrackin, Michelle Lynn (Author) / Elser, James J (Thesis advisor) / Grimm, Nancy (Committee member) / Hall, Sharon J (Committee member) / Hartnett, Hilairy E (Committee member) / Souza, Valeria (Committee member) / Arizona State University (Publisher)
Created2010
149520-Thumbnail Image.png
Description

General ecological thought pertaining to plant biology, conservation, and urban areas has rested on two potentially contradictory underlying assumptions. The first is that non-native plants can spread easily from human developments to “pristine” areas. The second is that native plants cannot disperse through developed areas. Both assume anthropogenic changes to

General ecological thought pertaining to plant biology, conservation, and urban areas has rested on two potentially contradictory underlying assumptions. The first is that non-native plants can spread easily from human developments to “pristine” areas. The second is that native plants cannot disperse through developed areas. Both assume anthropogenic changes to ecosystems create conditions that favor non-native plants and hinder native species. However, it is just as likely that anthropogenic alterations of habitats will favor certain groups of plant species with similar functional traits, whether native or not. Migration of plants can be divided into the following stages: dispersal, germination, establishment, reproduction and spread. Functional traits of species determine which are most successful at each of the stages of invasion or range enlargement. I studied the traits that allow both native and non-native plant species to disperse into freeway corridors, germinate, establish, reproduce, and then disperse along those corridors in Phoenix, Arizona. Field methods included seed bank sample collection and germination, vegetation surveys, and seed trapping. I also evaluated concentrations of plant-available nitrate as a result of localized nitrogen deposition. While many plant species found on the roadsides are either landscape varieties or typical weedy species, some uncommon native species and unexpected non-native species were also encountered. Maintenance regimes greatly influence the amount of vegetative cover and species composition along roadsides. Understanding which traits permit success at various stages of the invasion process indicates whether it is native, non-native, or species with particular traits that are likely to move through the city and establish in the desert. In a related case study conducted in Victoria, Australia, transportation professionals and ecologists were surveyed regarding preferences for roadside landscape design. Roadside design and maintenance projects are typically influenced by different groups of transportation professionals at various stages in a linear project cycle. Landscape architects and design professionals have distinct preferences and priorities compared to other transportation professionals and trained ecologists. The case study reveals the need for collaboration throughout the stages of design, construction and maintenance in order to efficiently manage roadsides for multiple priorities.

ContributorsGade, Kristin Joan (Author) / Kinzig, Ann P (Thesis advisor) / Grimm, Nancy (Committee member) / Perrings, Charles (Committee member) / Robbins, Paul (Committee member) / Stromberg, Juliet C. (Committee member) / Arizona State University (Publisher)
Created2010
149521-Thumbnail Image.png
Description

More than half of all accessible freshwater has been appropriated for human use, and a substantial portion of terrestrial ecosystems have been transformed by human action. These impacts are heaviest in urban ecosystems, where impervious surfaces increase runoff, water delivery and stormflows are managed heavily, and there are substantial anthropogenic

More than half of all accessible freshwater has been appropriated for human use, and a substantial portion of terrestrial ecosystems have been transformed by human action. These impacts are heaviest in urban ecosystems, where impervious surfaces increase runoff, water delivery and stormflows are managed heavily, and there are substantial anthropogenic sources of nitrogen (N). Urbanization also frequently results in creation of intentional novel ecosystems. These "designed" ecosystems are fashioned to fulfill particular needs of the residents, or ecosystem services. In the Phoenix, Arizona area, the augmentation and redistribution of water has resulted in numerous component ecosystems that are atypical for a desert environment. Because these systems combine N loading with the presence of water, they may be hot spots of biogeochemical activity. The research presented here illustrates the types of hydrological modifications typical of desert cities and documents the extent and distribution of common designed aquatic ecosystems in the Phoenix metropolitan area: artificial lakes and stormwater retention basins. While both ecosystems were designed for other purposes (recreation/aesthetics and flood abatement, respectively), they have the potential to provide the added ecosystem service of N removal via denitrification. However, denitrification in urban lakes is likely to be limited by the rate of diffusion of nitrate into the sediment. Retention basins export some nitrate to groundwater, but grassy basins have higher denitrification rates than xeriscaped ones, due to higher soil moisture and organic matter content. An economic valuation of environmental amenities demonstrates the importance of abundant vegetation, proximity to water, and lower summer temperatures throughout the region. These amenities all may be provided by designed, water-intensive ecosystems. Some ecosystems are specifically designed for multiple uses, but maximizing one ecosystem service often entails trade-offs with other services. Further investigation into the distribution, bundling, and tradeoffs among water-related ecosystem services shows that some types of services are constrained by the hydrogeomorphology of the area, while for others human engineering and the creation of designed ecosystems has enabled the delivery of hydrologic ecosystem services independent of natural constraints.

ContributorsLarson, Elisabeth Knight (Author) / Grimm, Nancy (Thesis advisor) / Hartnett, Hilairy E (Committee member) / Fisher, Stuart G. (Committee member) / Anderies, John M (Committee member) / Lohse, Kathleen A (Committee member) / Arizona State University (Publisher)
Created2010