Matching Items (146)
Filtering by

Clear all filters

151291-Thumbnail Image.png
Description
The contemporary architectural pedagogy is far removed from its ancestry: the classical Beaux-Arts and polytechnic schools of the 19th century and the Bauhaus and Vkhutemas models of the modern period. Today, the "digital" has invaded the academy and shapes pedagogical practices, epistemologies, and ontologies within it, and this invasion is

The contemporary architectural pedagogy is far removed from its ancestry: the classical Beaux-Arts and polytechnic schools of the 19th century and the Bauhaus and Vkhutemas models of the modern period. Today, the "digital" has invaded the academy and shapes pedagogical practices, epistemologies, and ontologies within it, and this invasion is reflected in teaching practices, principles, and tools. Much of this digital integration goes unremarked and may not even be explicitly taught. In this qualitative research project, interviews with 18 leading architecture lecturers, professors, and deans from programs across the United States were conducted. These interviews focused on advanced practices of digital architecture, such as the use of digital tools, and how these practices are viewed. These interviews yielded a wealth of information about the uses (and abuses) of advanced digital technologies within the architectural academy, and the results were analyzed using the methods of phenomenology and grounded theory. Most schools use digital technologies to some extent, although this extent varies greatly. While some schools have abandoned hand-drawing and other hand-based craft almost entirely, others have retained traditional techniques and use digital technologies sparingly. Reasons for using digital design processes include industry pressure as well as the increased ability to solve problems and the speed with which they could be solved. Despite the prevalence of digital design, most programs did not teach related design software explicitly, if at all, instead requiring students (especially graduate students) to learn to use them outside the design studio. Some of the problems with digital design identified in the interviews include social problems such as alienation as well as issues like understanding scale and embodiment of skill.
ContributorsAlqabandy, Hamad (Author) / Brandt, Beverly (Thesis advisor) / Mesch, Claudia (Committee member) / Newton, David (Committee member) / Arizona State University (Publisher)
Created2012
152765-Thumbnail Image.png
Description
Flavivirus infections are emerging as significant threats to human health around the globe. Among them West Nile(WNV) and Dengue Virus (DV) are the most prevalent in causing human disease with WNV outbreaks occurring in all areas around the world and DV epidemics in more than 100 countries. WNV is a

Flavivirus infections are emerging as significant threats to human health around the globe. Among them West Nile(WNV) and Dengue Virus (DV) are the most prevalent in causing human disease with WNV outbreaks occurring in all areas around the world and DV epidemics in more than 100 countries. WNV is a neurotropic virus capable of causing meningitis and encephalitis in humans. Currently, there are no therapeutic treatments or vaccines available. The expanding epidemic of WNV demands studies that develop efficacious therapeutics and vaccines and produce them rapidly and inexpensively. In response, our lab developed a plant-derived monoclonal antibody (mAb) (pHu-E16) against DIII (WNV antigen) that is able to neutralize and prevent mice from lethal infection. However, this drug has a short window of efficacy due to pHu-E16's inability to cross the Blood Brain Barrier (BBB) and enter the brain. Here, we constructed a bifunctional diabody, which couples the neutralizing activity of E16 and BBB penetrating activity of 8D3 mAb. We also produced a plant-derived E16 scFv-CH1-3 variant with equivalent specific binding as the full pHu-E16 mAb, but only requiring one gene construct for production. Furthermore, a WNV vaccine based on plant-derived DIII was developed showing proper folding and potentially protective immune response in mice. DV causes severe hemorrhaging diseases especially in people exposed to secondary DV infection from a heterotypic strain. It is hypothesized that sub-neutralizing cross-reactive antibodies from the first exposure aid the second infection in a process called antibody-dependent enhancement (ADE). ADE depends on the ability of mAb to bind Fc receptors (FcγRs), and has become a major roadblock for developing mAb-based therapeutics against DV. We aim to produce an anti-Dengue mAb (E60) in different glycoengineered plant lines that exhibit reduced/differential binding to FcγRs, therefore, reducing or eliminating ADE. We have successfully cloned the molecular constructs of E60, and expressed it in two plant lines with different glycosylation patterns. We demonstrated that both plant-derived E60 mAb glycoforms retained specific recognition and neutralization activity against DV. Overall, our study demonstrates great strives to develop efficacious therapeutics and potent vaccine candidates against Flaviviruses in plant expression systems.
ContributorsHurtado, Jonathan (Author) / Chen, Qiang (Thesis advisor) / Huffman, Holly A (Committee member) / Steele, Kelly P (Committee member) / Arizona State University (Publisher)
Created2014
153442-Thumbnail Image.png
Description
It has been identified in the literature that there exists a link between the built environment and non-motorized transport. This study aims to contribute to existing literature on the effects of the built environment on cycling, examining the case of the whole State of California. Physical built environment features are

It has been identified in the literature that there exists a link between the built environment and non-motorized transport. This study aims to contribute to existing literature on the effects of the built environment on cycling, examining the case of the whole State of California. Physical built environment features are classified into six groups as: 1) local density, 2) diversity of land use, 3) road connectivity, 4) bike route length, 5) green space, 6) job accessibility. Cycling trips in one week for all children, school children, adults and employed-adults are investigated separately. The regression analysis shows that cycling trips is significantly associated with some features of built environment when many socio-demographic factors are taken into account. Street intersections, bike route length tend to increase the use of bicycle. These effects are well-aligned with literature. Moreover, both local and regional job accessibility variables are statistically significant in two adults' models. However, residential density always has a significant negatively effect on cycling trips, which is still need further research to confirm. Also, there is a gap in literature on how green space affects cycling, but the results of this study is still too unclear to make it up. By elasticity analysis, this study concludes that street intersections is the most powerful predictor on cycling trips. From another perspective, the effects of built environment on cycling at workplace (or school) are distinguished from at home. This study implies that a wide range of measures are available for planners to control vehicle travel by improving cycling-level in California.
ContributorsWang, Kailai, M.U.E.P (Author) / Salon, Deborah (Thesis advisor) / Rey, Sergio (Committee member) / Li, Wenwen (Committee member) / Arizona State University (Publisher)
Created2015
153195-Thumbnail Image.png
Description
The Romanian avant-garde artist Constantin Brancusi is considered one of the most significant artists of modern sculpture. This is due to his innovative use of materials, such as wood and marble, and his reduction and precision of form. Brancusi developed his abstraction with "primitive" sources of art in mind. This

The Romanian avant-garde artist Constantin Brancusi is considered one of the most significant artists of modern sculpture. This is due to his innovative use of materials, such as wood and marble, and his reduction and precision of form. Brancusi developed his abstraction with "primitive" sources of art in mind. This thesis examines how and to what extent primitivism played a central role in Brancusi's sculptures and his construction as a primitive artist.

Romanian folk art and African art were the two main sources of influence on Brancusi's primitivism. Brancusi identified himself with the Romanian peasantry and its folk culture. Romanian folk culture embraces woodcarving and folk literary fables--both of which Brancusi incorporated in his sculptures. In my opinion, Brancusi's wood pedestals, such as the Endless Column, are based on wood funerary, decorative, and architectural motifs from Romanian villages.

Brancusi was exposed to African art through his relationship with the New York avant-garde. The art dealers Alfred Stieglitz, Marius de Zayas, and Joseph Brummer exhibited Brancusi's sculptures in their galleries, in addition to exhibiting African art. Meanwhile, Brancusi's main patron John Quinn also collected African art. His interaction with the New York avant-garde led him to incorporate formal features of African sculpture, such as the oval forms of African masks, into his abstract sculptures. Brancusi also used African art to expose the racial prejudice of his time. African art, along with Romanian folk art, informed Brancusi's primitivism consistently throughout his long career as a modern sculptor.
ContributorsMiholca, Amelia (Author) / Mesch, Claudia (Thesis advisor) / Brown, Claudia (Committee member) / Forgács, Éva (Committee member) / Arizona State University (Publisher)
Created2014
149725-Thumbnail Image.png
Description
Infections caused by the Hepatitis C Virus (HCV) are very common worldwide, affecting up to 3% of the population. Chronic infection of HCV may develop into liver cirrhosis and liver cancer which is among the top five of the most common cancers. Therefore, vaccines against HCV are under intense study

Infections caused by the Hepatitis C Virus (HCV) are very common worldwide, affecting up to 3% of the population. Chronic infection of HCV may develop into liver cirrhosis and liver cancer which is among the top five of the most common cancers. Therefore, vaccines against HCV are under intense study in order to prevent HCV from harming people's health. The envelope protein 2 (E2) of HCV is thought to be a promising vaccine candidate because it can directly bind to a human cell receptor and plays a role in viral entry. However, the E2 protein production in cells is inefficient due to its complicated matured structure. Folding of E2 in the endoplasmic reticulum (ER) is often error-prone, resulting in production of aggregates and misfolded proteins. These incorrect forms of E2 are not functional because they are not able to bind to human cells and stimulate antibody response to inhibit this binding. This study is aimed to overcome the difficulties of HCV E2 production in plant system. Protein folding in the ER requires great assistance from molecular chaperones. Thus, in this study, two molecular chaperones in the ER, calreticulin and calnexin, were transiently overexpressed in plant leaves in order to facilitate E2 folding and production. Both of them showed benefits in increasing the yield of E2 and improving the quality of E2. In addition, poorly folded E2 accumulated in the ER may cause stress in the ER and trigger transcriptional activation of ER molecular chaperones. Therefore, a transcription factor involved in this pathway, named bZIP60, was also overexpressed in plant leaves, aiming at up-regulating a major family of molecular chaperones called BiP to assist protein folding. However, our results showed that BiP mRNA levels were not up-regulated by bZIP60, but they increased in response to E2 expression. The Western blot analysis also showed that overexpression of bZIP60 had a small effect on promoting E2 folding. Overall, this study suggested that increasing the level of specific ER molecular chaperones was an effective way to promote HCV E2 protein production and maturation.
ContributorsHong, Fan (Author) / Mason, Hugh (Thesis advisor) / Gaxiola, Roberto (Committee member) / Chang, Yung (Committee member) / Chen, Qiang (Committee member) / Arizona State University (Publisher)
Created2011
150829-Thumbnail Image.png
Description
In the middle of the 20th century, juried annuals of Native American painting in art museums were unique opportunities because of their select focus on two-dimensional art as opposed to "craft" objects and their inclusion of artists from across the United States. Their first fifteen years were critical for patronage

In the middle of the 20th century, juried annuals of Native American painting in art museums were unique opportunities because of their select focus on two-dimensional art as opposed to "craft" objects and their inclusion of artists from across the United States. Their first fifteen years were critical for patronage and widespread acceptance of modern easel painting. Held at the Philbrook Art Center in Tulsa (1946-1979), the Denver Art Museum (1951-1954), and the Museum of New Mexico Art Gallery in Santa Fe (1956-1965), they were significant not only for the accolades and prestige they garnered for award winners, but also for setting standards of quality and style at the time. During the early years of the annuals, the art was changing, some moving away from conventional forms derived from the early art training of the 1920s and 30s in the Southwest and Oklahoma, and incorporating modern themes and styles acquired through expanded opportunities for travel and education. The competitions reinforced and reflected a variety of attitudes about contemporary art which ranged from preserving the authenticity of the traditional style to encouraging experimentation. Ultimately becoming sites of conflict, the museums that hosted annuals contested the directions in which artists were working. Exhibition catalogs, archived documents, and newspaper and magazine articles about the annuals provide details on the exhibits and the changes that occurred over time. The museums' guidelines and motivations, and the statistics on the award winners reveal attitudes toward the art. The institutions' reactions in the face of controversy and their adjustments to the annuals' guidelines impart the compromises each made as they adapted to new trends that occurred in Native American painting over a fifteen year period. This thesis compares the approaches of three museums to their juried annuals and establishes the existence of a variety of attitudes on contemporary Native American painting from 1946-1960. Through this collection of institutional views, the competitions maintained a patronage base for traditional style painting while providing opportunities for experimentation, paving the way for the great variety and artistic progress of Native American painting today.
ContributorsPeters, Stephanie (Author) / Duncan, Kate (Thesis advisor) / Fahlman, Betsy (Thesis advisor) / Mesch, Claudia (Committee member) / Arizona State University (Publisher)
Created2012
156095-Thumbnail Image.png
Description
Informal public transport is commonplace in the developing world, but the service exists in the United States as well, and is understudied. Often called "dollar vans", New York's commuter vans serve approximately 120,000 people every day (King and Goldwyn, 2014). While this is a tiny fraction of the New York

Informal public transport is commonplace in the developing world, but the service exists in the United States as well, and is understudied. Often called "dollar vans", New York's commuter vans serve approximately 120,000 people every day (King and Goldwyn, 2014). While this is a tiny fraction of the New York transit rider population, it is comparable to the total number of commuters who ride transit in smaller cities such as Minneapolis/St Paul and Phoenix. The first part of this study reports on the use of commuter vans in Eastern Queens based on a combination of surveys and a ridership tally, all conducted in summer 2016. It answers four research questions: How many people ride the vans? Who rides the commuter vans? Why do they ride commuter vans? Do commuter vans complement or compete against formal transit? Commuter van ridership in Eastern Queens was approximately 55,000 with a high percentage of female ridership. Time and cost savings were the main factors influencing commuter van ridership. Possession of a MetroCard was shown to negatively affect the frequency of commuter van ridership. The results show evidence of commuter vans playing both a competing and complementary role to MTA bus and subway transit. The second part of this study presents a SWOT analysis results of commuter vans, and the policy implications. It answers 2 research questions: What are the main strengths, weaknesses, opportunities and threats of commuter vans in Eastern Queens? and How do the current policies, rules and regulations affect commuter van operation? The SWOT analysis results show that the commuter van industry is resilient, performs a necessary service, and, with small adjustments that will help reduce operating costs and loss of profits have a chance of thriving in Eastern Queens and the rest of New York City. The study also discusses the mismatch between policy and practice offering recommendations for improvement to ensure that commuter vans continue to serve residents of New York City.
ContributorsMusili, Catherine (Author) / Salon, Deborah (Thesis advisor) / King, David (Committee member) / Kelley, Jason (Committee member) / Arizona State University (Publisher)
Created2017
156116-Thumbnail Image.png
Description
Immunotherapy has been revitalized with the advent of immune checkpoint blockade

treatments, and neo-antigens are the targets of immune system in cancer patients who

respond to the treatments. The cancer vaccine field is focused on using neo-antigens from

unique point mutations of genomic sequence in the cancer patient for making

personalized cancer vaccines. However,

Immunotherapy has been revitalized with the advent of immune checkpoint blockade

treatments, and neo-antigens are the targets of immune system in cancer patients who

respond to the treatments. The cancer vaccine field is focused on using neo-antigens from

unique point mutations of genomic sequence in the cancer patient for making

personalized cancer vaccines. However, we choose a different path to find frameshift

neo-antigens at the mRNA level and develop broadly effective cancer vaccines based on

frameshift antigens.

In this dissertation, I have summarized and characterized all the potential frameshift

antigens from microsatellite regions in human, dog and mouse. A list of frameshift

antigens was validated by PCR in tumor samples and the mutation rate was calculated for

one candidate – SEC62. I develop a method to screen the antibody response against

frameshift antigens in human and dog cancer patients by using frameshift peptide arrays.

Frameshift antigens selected by positive antibody response in cancer patients or by MHC

predictions show protection in different mouse tumor models. A dog version of the

cancer vaccine based on frameshift antigens was developed and tested in a small safety

trial. The results demonstrate that the vaccine is safe and it can induce strong B and T cell

immune responses. Further, I built the human exon junction frameshift database which

includes all possible frameshift antigens from mis-splicing events in exon junctions, and I

develop a method to find potential frameshift antigens from large cancer

immunosignature dataset with these databases. In addition, I test the idea of ‘early cancer

diagnosis, early treatment’ in a transgenic mouse cancer model. The results show that

ii

early treatment gives significantly better protection than late treatment and the correct

time point for treatment is crucial to give the best clinical benefit. A model for early

treatment is developed with these results.

Frameshift neo-antigens from microsatellite regions and mis-splicing events are

abundant at mRNA level and they are better antigens than neo-antigens from point

mutations in the genomic sequences of cancer patients in terms of high immunogenicity,

low probability to cause autoimmune diseases and low cost to develop a broadly effective

vaccine. This dissertation demonstrates the feasibility of using frameshift antigens for

cancer vaccine development.
ContributorsZhang, Jian (Author) / Johnston, Stephen Albert (Thesis advisor) / Chang, Yung (Committee member) / Stafford, Phillip (Committee member) / Chen, Qiang (Committee member) / Arizona State University (Publisher)
Created2018
156546-Thumbnail Image.png
Description
Bicycle sharing systems (BSS) operate on five continents, and they change quickly with technological innovations. The newest “dockless” systems eliminate both docks and stations, and have become popular in China since their launch in 2016. The rapid increase in dockless system use has exposed its drawbacks. Without the order imposed

Bicycle sharing systems (BSS) operate on five continents, and they change quickly with technological innovations. The newest “dockless” systems eliminate both docks and stations, and have become popular in China since their launch in 2016. The rapid increase in dockless system use has exposed its drawbacks. Without the order imposed by docks and stations, bike parking has become problematic. In the areas of densest use, the central business districts of large cities, dockless systems have resulted in chaotic piling of bikes and need for frequent rebalancing of bikes to other locations. In low-density zones, on the other hand, it may be difficult for customers to find a bike, and bikes may go unused for long periods. Using big data from the Mobike BSS in Beijing, I analyzed the relationship between building density and the efficiency of dockless BSS. Density is negatively correlated with bicycle idle time, and positively correlated with rebalancing. Understanding the effects of density on BSS efficiency can help BSS operators and municipalities improve the operating efficiency of BSS, increase regional cycling volume, and solve the bicycle rebalancing problem in dockless systems. It can also be useful to cities considering what kind of BSS to adopt.
ContributorsCui, Wencong (Author) / Kuby, Michael (Thesis advisor) / Salon, Deborah (Committee member) / Thigpen, Calvin (Committee member) / Arizona State University (Publisher)
Created2018
157161-Thumbnail Image.png
Description
Antibodies are naturally occurring proteins that protect a host during infection through direct neutralization and/or recruitment of the innate immune system. Unfortunately, in some infections, antibodies present unique hurdles that must be overcome for a safer and more efficacious antibody-based therapeutic (e.g., antibody dependent viral enhancement (ADE) and inflammatory pathology).

Antibodies are naturally occurring proteins that protect a host during infection through direct neutralization and/or recruitment of the innate immune system. Unfortunately, in some infections, antibodies present unique hurdles that must be overcome for a safer and more efficacious antibody-based therapeutic (e.g., antibody dependent viral enhancement (ADE) and inflammatory pathology). This dissertation describes the utilization of plant expression systems to produce N-glycan specific antibody-based therapeutics for Dengue Virus (DENV) and Chikungunya Virus (CHIKV). The Fc region of an antibody interacts with Fcγ Receptors (FcγRs) on immune cells and components of the innate immune system. Each class of immune cells has a distinct action of neutralization (e.g., antibody dependent cell-mediated cytotoxicity (ADCC) and antibody dependent cell-mediated phagocytosis (ADCP)). Therefore, structural alteration of the Fc region results in novel immune pathways of protection. One approach is to modulate the N-glycosylation in the Fc region of the antibody. Of scientific significance, is the plant’s capacity to express human antibodies with homogenous plant and humanized N-glycosylation (WT and GnGn, respectively). This allows to study how specific glycovariants interact with other components of the immune system to clear an infection, producing a tailor-made antibody for distinct diseases. In the first section, plant-produced glycovariants were explored for reduced interactions with specific FcγRs for the overall reduction in ADE for DENV infections. The results demonstrate a reduction in ADE of our plant-produced monoclonal antibodies in in vitro experiments, which led to a greater survival in vivo of immunodeficient mice challenged with lethal doses of DENV and a sub-lethal dose of DENV in ADE conditions. In the second section, plant-produced glycovariants were explored for increased interaction with specific FcγRs to improve ADCC in the treatment of the highly inflammatory CHIKV. The results demonstrate an increase ADCC activity in in vitro experiments and a reduction in CHIKV-associated inflammation in in vivo mouse models. Overall, the significance of this dissertation is that it can provide a treatment for DENV and CHIKV; but equally importantly, give insight to the role of N-glycosylation in antibody effector functions, which has a broader implication for therapeutic development for other viral infections.
ContributorsHurtado, Jonathan (Author) / Chen, Qiang (Thesis advisor) / Arntzen, Charles (Committee member) / Borges, Chad (Committee member) / Lake, Douglas (Committee member) / Arizona State University (Publisher)
Created2019