Matching Items (24)
Filtering by

Clear all filters

135785-Thumbnail Image.png
Description
Recurring incidents between pedestrians, bicycles, and vehicles at the intersection of Rural Road and Spence Avenue led to a team of students conducting their own investigation into the current conditions and analyzing a handful of alternatives. An extension of an industry-standard technique was used to build a control case which

Recurring incidents between pedestrians, bicycles, and vehicles at the intersection of Rural Road and Spence Avenue led to a team of students conducting their own investigation into the current conditions and analyzing a handful of alternatives. An extension of an industry-standard technique was used to build a control case which alternatives would be compared to. Four alternatives were identified, and the two that could be modeled in simulation software were both found to be technically feasible in the preliminary analysis.
ContributorsFellows, Christopher Lee (Author) / Lou, Yingyan (Thesis director) / Zhou, Xuesong (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
131665-Thumbnail Image.png
Description
Gathering the necessary information required to tackle traffic congestion problems is generally time consuming and challenging but is an important part of city planners’ work. The purpose of this paper is to describe the methodology used when analyzing potential solutions for the Arizona State Route 89A and Highway 179 roundabout

Gathering the necessary information required to tackle traffic congestion problems is generally time consuming and challenging but is an important part of city planners’ work. The purpose of this paper is to describe the methodology used when analyzing potential solutions for the Arizona State Route 89A and Highway 179 roundabout in Sedona, Arizona; which is currently experiencing significant congestion. The oversaturated condition is typically applied to signalized intersections but its application to roundabouts requires further exploration for future management of similar transportation systems. The accompanying Quick Estimation and Simulation model (QESM) spreadsheet was calibrated using an iterative process to optimize its level of adaptability to various scenarios. This microsimulation modeling program can be used to predict the outcome of possible roadway improvements aimed at decreasing traffic congestion. The information provided in this paper helps users understand traffic system problems, as a primary to visual simulation programs.
ContributorsBrunetti, Isabel (Co-author) / Tran, Adam (Co-author) / Zhou, Xuesong (Thesis director) / Carreon, Adam (Committee member) / Civil, Environmental and Sustainable Eng Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
171423-Thumbnail Image.png
Description
The emerging multimodal mobility as a service (MaaS) and connected and automated mobility (CAM) are expected to improve individual travel experience and entire transportation system performance in various aspects, such as convenience, safety, and reliability. There have been extensive efforts in the literature devoted to enhancing existing and developing new

The emerging multimodal mobility as a service (MaaS) and connected and automated mobility (CAM) are expected to improve individual travel experience and entire transportation system performance in various aspects, such as convenience, safety, and reliability. There have been extensive efforts in the literature devoted to enhancing existing and developing new methodologies and tools to investigate the impacts and potentials of CAM systems. Due to the hierarchical nature of CAM systems and associated intrinsic correlated human factors and physical infrastructures from various resolutions, simply considering components across different levels into a single model may be practically infeasible and computationally prohibitive in operation and decision stages. One of the greatest challenges in existing studies is to construct a theoretically sound and computationally efficient architecture such that CAM system modeling can be performed in an inherently consistent cross-resolution manner. This research aims to contribute to the modeling of CAM systems on layered transportation networks, with a special focus on the following three aspects: (1) layered CAM system architecture with a tight network and modeling consistency, in which different levels of tasks can be efficiently performed at dedicated layers; (2) cross-resolution traffic state estimation in CAM systems using heterogeneous observations; and (3) integrated city logistics operation optimization in CAM for improving system performance.
ContributorsLu, Jiawei (Author) / Zhou, Xuesong (Thesis advisor) / Pendyala, Ram (Committee member) / Xue, Guoliang (Committee member) / Mittelmann, Hans (Committee member) / Arizona State University (Publisher)
Created2022
187468-Thumbnail Image.png
Description
In this dissertation, a cyber-physical system called MIDAS (Managing Interacting Demand And Supply) has been developed, where the “supply” refers to the transportation infrastructure including traffic controls while the “demand” refers to its dynamic traffic loads. The strength of MIDAS lies in its ability to proactively control and manage mixed

In this dissertation, a cyber-physical system called MIDAS (Managing Interacting Demand And Supply) has been developed, where the “supply” refers to the transportation infrastructure including traffic controls while the “demand” refers to its dynamic traffic loads. The strength of MIDAS lies in its ability to proactively control and manage mixed vehicular traffic, having various levels of autonomy, through traffic intersections. Using real-time traffic control algorithms MIDAS minimizes wait times, congestion, and travel times on existing roadways. For traffic engineers, efficient control of complicated traffic movements used at diamond interchanges (DI), which interface streets with freeways, is challenging for normal human driven vehicular traffic, let alone for communicationally-connected vehicles (CVs) due to stochastic demand and uncertainties. This dissertation first develops a proactive traffic control algorithm, MIDAS, using forward-recursion dynamic programming (DP), for scheduling large set of traffic movements of non-connected vehicles and CVs at the DIs, over a finite-time horizon. MIDAS captures measurements from fixed detectors and captures Lagrangian measurements from CVs, to estimate link travel times, arrival times and turning movements. Simulation study shows MIDAS’ outperforms (a) a current optimal state-of-art optimal fixed-cycle time control scheme, and (b) a state-of-art traffic adaptive cycle-free scheme. Subsequently, this dissertation addresses the challenges of improving the road capacity by platooning fully autonomous vehicles (AVs), resulting in smaller headways and greater road utilization. With the MIDAS AI (Autonomous Intersection) control, an effective platooning strategy is developed, and optimal release sequence of AVs is determined using a new forward-recursive DP that minimizes the time-loss delays of AVs. MIDAS AI evaluates the DP decisions every second and communicates optimal actions to the AVs. Although MIDAS AI’s exact DP achieves optimal solution in almost real-time compared to other exact algorithms, it suffers from scalability. To address this challenge, the dissertation then develops MIDAS RAIC (Reinforced Autonomous Intersection Control), a deep reinforcement learning based real-time dynamic traffic control system for AVs at an intersection. Simulation results show the proposed deep Q-learning architecture trains MIDAS RAIC to learn a near-optimal policy that minimizes the total cumulative time loss delay and performs nearly as well as the MIDAS AI.
ContributorsPotluri, Viswanath (Author) / Mirchandani, Pitu (Thesis advisor) / Ju, Feng (Committee member) / Zhou, Xuesong (Committee member) / Sefair, Jorge (Committee member) / Arizona State University (Publisher)
Created2023
156668-Thumbnail Image.png
Description
Priced Managed Lanes (MLs) have been increasingly advocated as one of the effective ways to mitigating congestion in recent years. This study explores a new and innovative pricing strategy for MLs called Travel Time Refund (TTR). The proposed TTR provides an additional option to paying drivers that insures their travel

Priced Managed Lanes (MLs) have been increasingly advocated as one of the effective ways to mitigating congestion in recent years. This study explores a new and innovative pricing strategy for MLs called Travel Time Refund (TTR). The proposed TTR provides an additional option to paying drivers that insures their travel time by issuing a refund to the toll cost if they do not reach their destination within specified travel times due to accidents or other unforeseen circumstances. Perceived benefits of TTR include raised public acceptance towards priced MLs, utilization increase of HOV/HOT lanes, overall congestion mitigation, and additional funding for relevant transportation agencies. To gauge travelers’ interests of TTR and to analyse its possible impacts, a stated preference (SP) survey was performed. An exploratory and statistical analysis of the survey responses revealed negative interest towards HOT and TTR option in accordance with common wisdom and previous studies. However, it is found that travelers are less negative about TTR than HOT alone; supporting the idea, that TTR could make HOT facilities more appealing. The impact of travel time reliability and latent variables representing psychological constructs on travelers’ choices in response to this new pricing strategy was also analysed. The results indicate that along with travel time and reliability, the decision maker’s attitudes and the level of comprehension of the concept of HOT and TTR play a significant role in their choice making. While the refund option may be theoretically and analytically feasible, the practical implementation issues cannot be ignored. This study also provides a discussion of the potential implementation considerations that include information provision to connected and non-connected vehicles, distinction between toll-only and refund customers, measurement of actual travel time, refund calculation and processing and safety and human factors issues. As the market availability of Connected and Automated Vehicles (CAVs) is prognosticated by 2020, the potential impact of such technologies on effective demand management, especially on MLs is worth investigating. Simulation analysis was performed to evaluate the system performance of a hypothetical road network at varying market penetration of CAVs. The results indicate that Connected Vehicles (CVs) could potentially encourage and enhance the use of MLs.
ContributorsVadlamani, Sravani (Author) / Lou, Yingyan (Thesis advisor) / Pendyala, Ram (Committee member) / Zhou, Xuesong (Committee member) / Grimm, Kevin (Committee member) / Arizona State University (Publisher)
Created2018
154860-Thumbnail Image.png
Description
Given that more and more planned special events are hosted in urban areas, during which travel demand is considerably higher than usual, it is one of the most effective strategies opening public rapid transit lines and building park-and-ride facilities to allow visitors to park their cars and take buses to

Given that more and more planned special events are hosted in urban areas, during which travel demand is considerably higher than usual, it is one of the most effective strategies opening public rapid transit lines and building park-and-ride facilities to allow visitors to park their cars and take buses to the event sites. In the meantime, special event workforce often needs to make balances among the limitations of construction budget, land use and targeted travel time budgets for visitors. As such, optimizing the park-and-ride locations and capacities is critical in this process of transportation management during planned special event. It is also known as park-and-ride facility design problem.

This thesis formulates and solves the park-and-ride facility design problem for special events based on space-time network models. The general network design process with park-and-ride facilities location design is first elaborated and then mathematical programming formulation is established for special events. Meanwhile with the purpose of relax some certain hard constraints in this problem, a transformed network model which the hard park-and-ride constraints are pre-built into the new network is constructed and solved with the similar solution algorithm. In doing so, the number of hard constraints and level of complexity of the studied problem can be considerable reduced in some cases. Through two case studies, it is proven that the proposed formulation and solution algorithms can provide effective decision supports in selecting the locations and capabilities of park-and-ride facilities for special events.
ContributorsZhu, Nana (Author) / Zhou, Xuesong (Thesis advisor) / Lou, Yingyan (Committee member) / Chester, Mikhail (Committee member) / Arizona State University (Publisher)
Created2016
154324-Thumbnail Image.png
Description
This study examines the outcomes of roundabouts in the State of Arizona. Two types of roundabouts are introduced in this study, single-lane roundabouts and double-lane roundabouts. A total of 17 roundabouts across Arizona were chosen upon several selection criteria and according to the availability of data for roundabouts in Arizona.

This study examines the outcomes of roundabouts in the State of Arizona. Two types of roundabouts are introduced in this study, single-lane roundabouts and double-lane roundabouts. A total of 17 roundabouts across Arizona were chosen upon several selection criteria and according to the availability of data for roundabouts in Arizona. Government officials and local cities’ personnel were involved in this work in order to achieve the most accurate results possible. This thesis focused mainly on the impact of roundabouts on the accident rates, accident severities, and any specific trends that could have been found. Scottsdale, Sedona, Phoenix, Prescott, and Cottonwood are the cities that were involved in this study. As an overall result, both types of roundabouts showed improvements in decreasing the severity of accidents. Single-lane roundabouts had the advantage of largely reducing the overall rate of accidents by 18%, while double-lane roundabouts increased the accident rate by 62%. Although the number of fatalities was very small, both types of roundabouts were able to stop all fatalities during the analysis periods used in this study. Damage rates increased by 2% and 60% for single-lane and double-lane roundabouts, respectively. All levels of injury severities dropped by 44% and 16% for single-lane and double-lane roundabouts, respectively. Education and awareness levels of the public still need to be improved in order for people to be able to drive within the roundabouts safely.
ContributorsSouliman, Beshoy (Author) / Mamlouk, Michael (Thesis advisor) / Kaloush, Kamil (Committee member) / Zhou, Xuesong (Committee member) / Arizona State University (Publisher)
Created2016
154911-Thumbnail Image.png
Description
In the American Southwest, an area which already experiences a significant number of cooling degree days, anthropogenic climate change is expected to result in higher average temperatures and the increasing frequency, duration, and severity of heat waves. Climatological forecasts predict heat waves will increase by 150-840% in Los Angeles County,

In the American Southwest, an area which already experiences a significant number of cooling degree days, anthropogenic climate change is expected to result in higher average temperatures and the increasing frequency, duration, and severity of heat waves. Climatological forecasts predict heat waves will increase by 150-840% in Los Angeles County, California and 340-1800% in Maricopa County, Arizona. Heat exposure is known to increase both morbidity and mortality and rising temperatures represent a threat to public health. As a result there has been a significant amount of research into understanding existing socio-economic vulnerabilities to extreme heat which has identified population subgroups at greater risk of adverse health outcomes. Additionally, research has shown that man-made infrastructure can mitigate or exacerbate these health risks. However, while recent socio-economic heat vulnerability research has developed geospatially explicit results, research which links it directly with infrastructure characteristics is limited. Understanding how socio-economic vulnerabilities interact with infrastructure systems is a critical component to developing climate adaptation policies and programs which efficiently and effectively mitigate health risks associated with rising temperatures.

The availability of cooled space, whether public or private, has been shown to greatly reduce health risks associated with extreme heat. However, a lack of fine-scale knowledge of which households have access to this infrastructure results in an incomplete understanding of the health risks associated with heat. This knowledge gap could result in the misallocation of resources intended to mitigate negative health impacts associated with heat exposure. Additionally, when discussing accessibility to public cooled space there are underlying questions of mobility and mode choice. In addition to captive riders, a growing emphasis on walking, biking and public transit will likely expose additional choice riders to extreme temperatures and compound existing vulnerabilities to heat.
ContributorsFraser, Andrew Michael (Author) / Chester, Mikhail (Thesis advisor) / Seager, Thomas (Committee member) / Zhou, Xuesong (Committee member) / Kuby, Michael (Committee member) / Arizona State University (Publisher)
Created2016
154966-Thumbnail Image.png
Description
With high potential for automobiles to cause air pollution and greenhouse gas emissions, there is concern that automobiles accessing or egressing public transportation may cause emissions similar to regular automobile use. Due to limited literature and research that evaluates and discusses environmental impacts from first and last mile portions of

With high potential for automobiles to cause air pollution and greenhouse gas emissions, there is concern that automobiles accessing or egressing public transportation may cause emissions similar to regular automobile use. Due to limited literature and research that evaluates and discusses environmental impacts from first and last mile portions of transit trips, there is a lack of understanding on this topic. This research aims to comprehensively evaluate the life cycle impacts of first and last mile trips on multimodal transit. A case study of transit and automobile travel in the greater Los Angeles region is evaluated by using a comprehensive life cycle assessment combined with regional household travel survey data to evaluate first-last mile trip impacts in multimodal transit focusing on automobile trips accessing or egressing transit. First and last mile automobile trips were found to increase total multimodal transit trip emissions by 2 to 12 times (most extreme cases were carbon monoxide and volatile organic compounds). High amounts of coal-fired energy generation can cause electric propelled rail trips with automobile access or egress to have similar or more emissions (commonly greenhouse gases, sulfur dioxide, and mono-nitrogen oxides) than competing automobile trips, however, most criteria air pollutants occur remotely. Methods to reduce first-last mile impacts depend on the characteristics of the transit systems and may include promoting first-last mile carpooling, adjusting station parking pricing and availability, and increased emphasis on walking and biking paths in areas with low access-egress trip distances.
ContributorsHoehne, Christopher G (Author) / Chester, Mikhail V (Thesis advisor) / Salon, Deborah (Committee member) / Zhou, Xuesong (Committee member) / Arizona State University (Publisher)
Created2016
153677-Thumbnail Image.png
Description
Modern intelligent transportation systems (ITS) make driving more efficient, easier, and safer. Knowledge of real-time traffic conditions is a critical input for operating ITS. Real-time freeway traffic state estimation approaches have been used to quantify traffic conditions given limited amount of data collected by traffic sensors. Currently, almost all real-time

Modern intelligent transportation systems (ITS) make driving more efficient, easier, and safer. Knowledge of real-time traffic conditions is a critical input for operating ITS. Real-time freeway traffic state estimation approaches have been used to quantify traffic conditions given limited amount of data collected by traffic sensors. Currently, almost all real-time estimation methods have been developed for estimating laterally aggregated traffic conditions in a roadway segment using link-based models which assume homogeneous conditions across multiple lanes. However, with new advances and applications of ITS, knowledge of lane-based traffic conditions is becoming important, where the traffic condition differences among lanes are recognized. In addition, most of the current real-time freeway traffic estimators consider only data from loop detectors. This dissertation develops a bi-level data fusion approach using heterogeneous multi-sensor measurements to estimate real-time lane-based freeway traffic conditions, which integrates a link-level model-based estimator and a lane-level data-driven estimator.

Macroscopic traffic flow models describe the evolution of aggregated traffic characteristics over time and space, which are required by model-based traffic estimation approaches. Since current first-order Lagrangian macroscopic traffic flow model has some unrealistic implicit assumptions (e.g., infinite acceleration), a second-order Lagrangian macroscopic traffic flow model has been developed by incorporating drivers’ anticipation and reaction delay. A multi-sensor extended Kalman filter (MEKF) algorithm has been developed to combine heterogeneous measurements from multiple sources. A MEKF-based traffic estimator, explicitly using the developed second-order traffic flow model and measurements from loop detectors as well as GPS trajectories for given fractions of vehicles, has been proposed which gives real-time link-level traffic estimates in the bi-level estimation system.

The lane-level estimation in the bi-level data fusion system uses the link-level estimates as priors and adopts a data-driven approach to obtain lane-based estimates, where now heterogeneous multi-sensor measurements are combined using parallel spatial-temporal filters.

Experimental analysis shows that the second-order model can more realistically reproduce real world traffic flow patterns (e.g., stop-and-go waves). The MEKF-based link-level estimator exhibits more accurate results than the estimator that uses only a single data source. Evaluation of the lane-level estimator demonstrates that the proposed new bi-level multi-sensor data fusion system can provide very good estimates of real-time lane-based traffic conditions.
ContributorsZhou, Zhuoyang (Author) / Mirchandani, Pitu (Thesis advisor) / Askin, Ronald (Committee member) / Runger, George C. (Committee member) / Zhou, Xuesong (Committee member) / Arizona State University (Publisher)
Created2015