Matching Items (87)
Filtering by

Clear all filters

136024-Thumbnail Image.png
Description
Background: Human papillomavirus (HPV) is the cause of 99.7% of cervical cancers. Research of cervical cancer has made this disease mostly curable in the developing world. Head and neck cancer, which is increasingly caused by HPV, still is associated with a mortality rate of 50,000 in the US annually. This

Background: Human papillomavirus (HPV) is the cause of 99.7% of cervical cancers. Research of cervical cancer has made this disease mostly curable in the developing world. Head and neck cancer, which is increasingly caused by HPV, still is associated with a mortality rate of 50,000 in the US annually. This study proposed to evaluate the biology of HPV-16 in head and neck tumors by using RT-qPCR to measure the RNA expression and its relation to physical status of the virus. Methods: This study was to develop an assay that uses RT-qPCR to determine the quantitative expression of HPV-16 RNA coding for proteins E1, E2, E4, E5, E6, and E7 in tumor samples. The assay development started with creation of primers. It went on to test the primers on template DNA through traditional PCR and then on DNA from HPV-16 positive cell lines, SiHa and CaSki, using RT-qPCR. This paper also describes the troubleshooting methods taken for the PCR reaction. Once the primers are verified, the RT-qPCR process can be carried out on RNA purified from tumor samples. Results: No primer sets have been confirmed to produce a product through PCR or RT-qPCR. The primer sequences match up correctly with known sequences for HPV-16 E1, E2, E4, E5, E6, and E7. RT-qPCR showed results consistent with the hypothesis. Conclusion: The RT-qPCR protocol must be optimized to confirm the primer sequences work as desired. Then primers will be used to study physical status and RNA expression in HPV-positive and HPV-negative head and neck tumor samples. This assay can help shed light on which proteins are expressed most in tumors of the head and neck and will aid in the development of future screening and treatment options.
ContributorsKhazanovich, Jakob (Author) / Anderson, Karen (Thesis director) / Mangone, Marco (Committee member) / Sundaresan, Sri Krishna (Committee member) / Barrett, The Honors College (Contributor)
Created2015-05
135780-Thumbnail Image.png
Description
Duchenne Muscular Dystrophy (DMD) is an X-linked recessive disease characterized by progressive muscle loss and weakness. This disease arises from a mutation that occurs on a gene that encodes for dystrophin, which results in observable muscle death and inflammation; however, the genetic changes that result from dystrophin's dysfunctionality remain unknown.

Duchenne Muscular Dystrophy (DMD) is an X-linked recessive disease characterized by progressive muscle loss and weakness. This disease arises from a mutation that occurs on a gene that encodes for dystrophin, which results in observable muscle death and inflammation; however, the genetic changes that result from dystrophin's dysfunctionality remain unknown. Current DMD research uses mdx mice as a model, and while very useful, does not allow the study of cell-autonomous transcriptome changes during the progression of DMD due to the strong inflammatory response, perhaps hiding important therapeutic targets. C. elegans, which has a very weak inflammatory response compared to mdx mice and humans, has been used in the past to study DMD with some success. The worm ortholog of the dystrophin gene has been identified as dys-1 since its mutation phenocopies the progression of the disease and a portion of the human dystrophin gene alleviates symptoms. Importantly, the extracted RNA transcriptome from dys-1 worms showed significant change in gene expression, which needs to be further investigated with the development of a more robust model. Our lab previously published a method to isolate high-quality muscle-specific RNA from worms, which could be used to study such changes at higher resolution. We crossed the dys-1 worms with our muscle-specific strain and demonstrated that the chimeric strain exhibits similar behavioral symptoms as DMD patients as characterized by a shortened lifespan, difficulty in movement, and a decrease in speed. The presence of dys-1 and other members of the dystrophin complex in the body muscle were supported by the development of a resulting phenotype due to RNAi knockdown of each component in the body muscle; however, further experimentation is needed to reinforce this conclusion. Thus, the constructed chimeric C. elegans strain possesses unique characteristics that will allow the study of genetic changes, such as transcriptome rearrangements and dysregulation of miRNA, and how they affect the progression of DMD.
ContributorsNguyen, Thuy-Duyen Cao (Author) / Mangone, Marco (Thesis director) / Newbern, Jason (Committee member) / Duchaine, Thomas (Committee member) / School of Social Transformation (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136684-Thumbnail Image.png
Description
microRNAs (miRNAs) are short ~22nt non-coding RNAs that regulate gene output at the post-transcriptional level. Via targeting of degenerate elements primarily in 3'untranslated regions (3'UTR) of mRNAs, miRNAs can target thousands of varying genes and suppress their protein translation. The precise mechanistic function and bio- logical role of miRNAs is

microRNAs (miRNAs) are short ~22nt non-coding RNAs that regulate gene output at the post-transcriptional level. Via targeting of degenerate elements primarily in 3'untranslated regions (3'UTR) of mRNAs, miRNAs can target thousands of varying genes and suppress their protein translation. The precise mechanistic function and bio- logical role of miRNAs is not fully understood and yet it is a major contributor to a pleth- ora of diseases, including neurological disorders, muscular disorders, and cancer. Cer- tain model organisms are valuable in understanding the function of miRNA and there- fore fully understanding the biological significance of miRNA targeting. Here I report a mechanistic analysis of miRNA targeting in C. elegans, and a bioinformatic approach to aid in further investigation of miRNA targeted sequences. A few of the biologically significant mechanisms discussed in this thesis include alternative polyadenylation, RNA binding proteins, components of the miRNA recognition machinery, miRNA secondary structures, and their polymorphisms. This thesis also discusses a novel bioinformatic approach to studying miRNA biology, including computational miRNA target prediction software, and sequence complementarity. This thesis allows a better understanding of miRNA biology and presents an ideal strategy for approaching future research in miRNA targeting.
ContributorsWeigele, Dustin Keith (Author) / Mangone, Marco (Thesis director) / Katchman, Benjamin (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2014-12
137009-Thumbnail Image.png
Description
The Cannabis plant has historical roots with human beings. The plant produces compounds called cannabinoids, which are responsible for the physiological affects of Cannabis and make it a research candidate for medicinal use. Analysis of the plant and its components will help build a better database that could be used

The Cannabis plant has historical roots with human beings. The plant produces compounds called cannabinoids, which are responsible for the physiological affects of Cannabis and make it a research candidate for medicinal use. Analysis of the plant and its components will help build a better database that could be used to develop a complete roster of medicinal benefits. Research regarding the cellular protein receptors that bind the cannabinoids may not only help provide reasons explaining why the Cannabis plant could be medicinally relevant, but will also help explain how the receptors originated. The receptors may have been present in organisms before the present day Cannabis plant. So why would there be receptors that bind to cannabinoids? Searching for an endocannabinoid system could help explain the purpose of the cannabinoid receptors and their current structures in humans. Using genetic technologies we are able to take a closer look into the evolutionary history of cannabinoids and the receptors that bind them.
ContributorsSalasnek, Reed Samuel (Author) / Capco, David (Thesis director) / Mangone, Marco (Committee member) / Stump, Edmund (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-05
137083-Thumbnail Image.png
Description
A coincidence reporter construct, consisting of the p21-promoter and two luciferase genes (Firefly and Renilla), was constructed for the screening of drugs that might inhibit Olig2's tumorigenic role in glioblastoma. The reporter construct was tested using an Olig2 inhibitor, HSP990, as well as short hairpin RNA targeting Olig2. Further confirmatory

A coincidence reporter construct, consisting of the p21-promoter and two luciferase genes (Firefly and Renilla), was constructed for the screening of drugs that might inhibit Olig2's tumorigenic role in glioblastoma. The reporter construct was tested using an Olig2 inhibitor, HSP990, as well as short hairpin RNA targeting Olig2. Further confirmatory analysis is needed before the reporter cell line is ready for high-throughput screening at the NIH and lead compound selection.
ContributorsCusimano, Joseph Michael (Author) / LaBaer, Joshua (Thesis director) / Mangone, Marco (Committee member) / Mehta, Shwetal (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2014-05
137766-Thumbnail Image.png
Description
Background: Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer deaths in females worldwide, accounting for 23% of all new cancer cases and 14% of all total cancer deaths in 2008. Five tumor-normal pairs of primary breast epithelial cells were treated for infinite proliferation by

Background: Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer deaths in females worldwide, accounting for 23% of all new cancer cases and 14% of all total cancer deaths in 2008. Five tumor-normal pairs of primary breast epithelial cells were treated for infinite proliferation by using a ROCK inhibitor and mouse feeder cells. Methods: Raw paired-end, 100x coverage RNA-Seq data was aligned to the Human Reference Genome Version 19 using BWA and Tophat. Gene differential expression analysis was completed using Cufflinks and Cuffdiff. Interactive Genome Viewer was used for data visualization. Results: 15 genes were found to be down-regulated by at least one log-fold change in 4/5 of tumor samples. 75 genes were found to be down-regulated in 3/5 of our tumor samples by at least one log-fold change. 11 genes were found to be up-regulated in 4/5 of our tumor samples, and 68 genes were identified to be up-regulated in 3/5 of the tumor samples by at least one-fold change. Conclusion: Expression changes in genes such as AZGP1, AGER, ALG11, and S1007 suggest a disruption in the glycosylation pathway. No correlation was found between Cufflink's Her2 gene-expression and DAKO score classification.
ContributorsHernandez, Fernando (Author) / Anderson, Karen (Thesis director) / Mangone, Marco (Committee member) / Park, Jin (Committee member) / Barrett, The Honors College (Contributor) / Department of Information Systems (Contributor)
Created2013-05
137344-Thumbnail Image.png
Description
miRNAs are short non-coding regulatory RNAs that have an important roles in a wide range of biological processes. Dysfunction of miRNA regulation has also been shown to occur in diseases such as cancer. Despite the widespread influence of miRNAs in these contexts, the vast majority of miRNA targets are poorly

miRNAs are short non-coding regulatory RNAs that have an important roles in a wide range of biological processes. Dysfunction of miRNA regulation has also been shown to occur in diseases such as cancer. Despite the widespread influence of miRNAs in these contexts, the vast majority of miRNA targets are poorly characterized. The aim of this research project was to gain a better understating of miRNA targeting by using the model organism C. elegans. In order to do this I adapted a novel high-throughput assay to detect miRNA targets for use with the C. elegans 3`UTRome. As a proof of principle I performed this assay on 96 C. elegans 3`UTRs using high-throughput techniques. The results revealed miRNA interactions with two predicted 3`UTR targets for the miRNA lin-4 and ten unpredicted targets. The results also corroborated previous findings that certain worm miRNAs require special modifications to be expressed in human cells.
ContributorsKotagama, Kasuen Indrajith Bandara (Author) / Mangone, Marco (Thesis director) / Anderson, Karen (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2013-12
136626-Thumbnail Image.png
Description
Alternative polyadenylation (APA) is the biological mechanism in which the same gene can have multiple 3'untranslated region (3'UTR) isoforms due to the presence of multiple polyadenylation signal (PAS) elements within the pre mRNAs. Because APA produces mRNA transcripts that have different 3'UTR isoforms, certain transcripts may be subject to post-transcriptional

Alternative polyadenylation (APA) is the biological mechanism in which the same gene can have multiple 3'untranslated region (3'UTR) isoforms due to the presence of multiple polyadenylation signal (PAS) elements within the pre mRNAs. Because APA produces mRNA transcripts that have different 3'UTR isoforms, certain transcripts may be subject to post-transcriptional regulation by regulatory non-coding RNAs, such as microRNAs or RNA binding proteins defects of which have been implicated in diseases such as cancer. Despite the increasing level of information, functional understanding of the molecular mechanisms involved in transcription is still poorly understood, nor is it clear why APA is necessary at a cell or tissue-specific level. To address these questions I wanted to develop a set of sensor strain plasmids capable of detecting cleavage and polyadenylation in vivo, inject the complete sensor strain plasmid into C. elegans and prepare stable transgenic lines, and perform proof-of-principle RNAi feeding experiments targeting genes associated with the cleavage and polyadenylation complex machinery. I demonstrated that it was possible to create a plasmid capable of detecting cleavage and polyadenylation in C. elegans; however, issues arose during the RNAi assays indicating the sensor strain plasmid was not sensitive enough to the RNAi to effectively detect in the worms. Once the problems involved with sensitivity and variability in the RNAi effects are resolved, the plasmid would be able to better address questions regarding the functional understanding of molecular mechanisms involved in transcription termination.
ContributorsWilky, Henry Patrick (Author) / Mangone, Marco (Thesis director) / Newbern, Jason (Committee member) / Blazie, Stephen (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
141434-Thumbnail Image.png
Description

Background: Extreme heat is a public health challenge. The scarcity of directly comparable studies on the association of heat with morbidity and mortality and the inconsistent identification of threshold temperatures for severe impacts hampers the development of comprehensive strategies aimed at reducing adverse heat-health events.

Objectives: This quantitative study was designed

Background: Extreme heat is a public health challenge. The scarcity of directly comparable studies on the association of heat with morbidity and mortality and the inconsistent identification of threshold temperatures for severe impacts hampers the development of comprehensive strategies aimed at reducing adverse heat-health events.

Objectives: This quantitative study was designed to link temperature with mortality and morbidity events in Maricopa County, Arizona, USA, with a focus on the summer season.

Methods: Using Poisson regression models that controlled for temporal confounders, we assessed daily temperature–health associations for a suite of mortality and morbidity events, diagnoses, and temperature metrics. Minimum risk temperatures, increasing risk temperatures, and excess risk temperatures were statistically identified to represent different “trigger points” at which heat-health intervention measures might be activated.

Results: We found significant and consistent associations of high environmental temperature with all-cause mortality, cardiovascular mortality, heat-related mortality, and mortality resulting from conditions that are consequences of heat and dehydration. Hospitalizations and emergency department visits due to heat-related conditions and conditions associated with consequences of heat and dehydration were also strongly associated with high temperatures, and there were several times more of those events than there were deaths. For each temperature metric, we observed large contrasts in trigger points (up to 22°C) across multiple health events and diagnoses.

Conclusion: Consideration of multiple health events and diagnoses together with a comprehensive approach to identifying threshold temperatures revealed large differences in trigger points for possible interventions related to heat. Providing an array of heat trigger points applicable for different end-users may improve the public health response to a problem that is projected to worsen in the coming decades.

ContributorsPettiti, Diana B. (Author) / Hondula, David M. (Author) / Yang, Shuo (Author) / Harlan, Sharon L. (Author) / Chowell, Gerardo (Author)
Created2016-02-01
141438-Thumbnail Image.png
Description

Maricopa County, Arizona, anchor to the fastest growing megapolitan area in the United States, is located in a hot desert climate where extreme temperatures are associated with elevated risk of mortality. Continued urbanization in the region will impact atmospheric temperatures and, as a result, potentially affect human health. We aimed

Maricopa County, Arizona, anchor to the fastest growing megapolitan area in the United States, is located in a hot desert climate where extreme temperatures are associated with elevated risk of mortality. Continued urbanization in the region will impact atmospheric temperatures and, as a result, potentially affect human health. We aimed to quantify the number of excess deaths attributable to heat in Maricopa County based on three future urbanization and adaptation scenarios and multiple exposure variables.

Two scenarios (low and high growth projections) represent the maximum possible uncertainty range associated with urbanization in central Arizona, and a third represents the adaptation of high-albedo cool roof technology. Using a Poisson regression model, we related temperature to mortality using data spanning 1983–2007. Regional climate model simulations based on 2050-projected urbanization scenarios for Maricopa County generated distributions of temperature change, and from these predicted changes future excess heat-related mortality was estimated. Subject to urbanization scenario and exposure variable utilized, projections of heat-related mortality ranged from a decrease of 46 deaths per year (− 95%) to an increase of 339 deaths per year (+ 359%).

Projections based on minimum temperature showed the greatest increase for all expansion and adaptation scenarios and were substantially higher than those for daily mean temperature. Projections based on maximum temperature were largely associated with declining mortality. Low-growth and adaptation scenarios led to the smallest increase in predicted heat-related mortality based on mean temperature projections. Use of only one exposure variable to project future heat-related deaths may therefore be misrepresentative in terms of direction of change and magnitude of effects. Because urbanization-induced impacts can vary across the diurnal cycle, projections of heat-related health outcomes that do not consider place-based, time-varying urban heat island effects are neglecting essential elements for policy relevant decision-making.

ContributorsHondula, David M. (Author) / Georgescu, Matei (Author) / Balling, Jr., Robert C. (Author)
Created2014-04-28