Matching Items (14)
Filtering by

Clear all filters

151700-Thumbnail Image.png
Description
Ultrasound imaging is one of the major medical imaging modalities. It is cheap, non-invasive and has low power consumption. Doppler processing is an important part of many ultrasound imaging systems. It is used to provide blood velocity information and is built on top of B-mode systems. We investigate the performance

Ultrasound imaging is one of the major medical imaging modalities. It is cheap, non-invasive and has low power consumption. Doppler processing is an important part of many ultrasound imaging systems. It is used to provide blood velocity information and is built on top of B-mode systems. We investigate the performance of two velocity estimation schemes used in Doppler processing systems, namely, directional velocity estimation (DVE) and conventional velocity estimation (CVE). We find that DVE provides better estimation performance and is the only functioning method when the beam to flow angle is large. Unfortunately, DVE is computationally expensive and also requires divisions and square root operations that are hard to implement. We propose two approximation techniques to replace these computations. The simulation results on cyst images show that the proposed approximations do not affect the estimation performance. We also study backend processing which includes envelope detection, log compression and scan conversion. Three different envelope detection methods are compared. Among them, FIR based Hilbert Transform is considered the best choice when phase information is not needed, while quadrature demodulation is a better choice if phase information is necessary. Bilinear and Gaussian interpolation are considered for scan conversion. Through simulations of a cyst image, we show that bilinear interpolation provides comparable contrast-to-noise ratio (CNR) performance with Gaussian interpolation and has lower computational complexity. Thus, bilinear interpolation is chosen for our system.
ContributorsWei, Siyuan (Author) / Chakrabarti, Chaitali (Thesis advisor) / Frakes, David (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Arizona State University (Publisher)
Created2013
152200-Thumbnail Image.png
Description
Magnetic Resonance Imaging using spiral trajectories has many advantages in speed, efficiency in data-acquistion and robustness to motion and flow related artifacts. The increase in sampling speed, however, requires high performance of the gradient system. Hardware inaccuracies from system delays and eddy currents can cause spatial and temporal distortions in

Magnetic Resonance Imaging using spiral trajectories has many advantages in speed, efficiency in data-acquistion and robustness to motion and flow related artifacts. The increase in sampling speed, however, requires high performance of the gradient system. Hardware inaccuracies from system delays and eddy currents can cause spatial and temporal distortions in the encoding gradient waveforms. This causes sampling discrepancies between the actual and the ideal k-space trajectory. Reconstruction assuming an ideal trajectory can result in shading and blurring artifacts in spiral images. Current methods to estimate such hardware errors require many modifications to the pulse sequence, phantom measurements or specialized hardware. This work presents a new method to estimate time-varying system delays for spiral-based trajectories. It requires a minor modification of a conventional stack-of-spirals sequence and analyzes data collected on three orthogonal cylinders. The method is fast, robust to off-resonance effects, requires no phantom measurements or specialized hardware and estimate variable system delays for the three gradient channels over the data-sampling period. The initial results are presented for acquired phantom and in-vivo data, which show a substantial reduction in the artifacts and improvement in the image quality.
ContributorsBhavsar, Payal (Author) / Pipe, James G (Thesis advisor) / Frakes, David (Committee member) / Kodibagkar, Vikram (Committee member) / Arizona State University (Publisher)
Created2013
152063-Thumbnail Image.png
Description
A cerebral aneurysm is a bulging of a blood vessel in the brain. Aneurysmal rupture affects 25,000 people each year and is associated with a 45% mortality rate. Therefore, it is critically important to treat cerebral aneurysms effectively before they rupture. Endovascular coiling is the most effective treatment for cerebral

A cerebral aneurysm is a bulging of a blood vessel in the brain. Aneurysmal rupture affects 25,000 people each year and is associated with a 45% mortality rate. Therefore, it is critically important to treat cerebral aneurysms effectively before they rupture. Endovascular coiling is the most effective treatment for cerebral aneurysms. During coiling process, series of metallic coils are deployed into the aneurysmal sack with the intent of reaching a sufficient packing density (PD). Coils packing can facilitate thrombus formation and help seal off the aneurysm from circulation over time. While coiling is effective, high rates of treatment failure have been associated with basilar tip aneurysms (BTAs). Treatment failure may be related to geometrical features of the aneurysm. The purpose of this study was to investigate the influence of dome size, parent vessel (PV) angle, and PD on post-treatment aneurysmal hemodynamics using both computational fluid dynamics (CFD) and particle image velocimetry (PIV). Flows in four idealized BTA models with a combination of dome sizes and two different PV angles were simulated using CFD and then validated against PIV data. Percent reductions in post-treatment aneurysmal velocity and cross-neck (CN) flow as well as percent coverage of low wall shear stress (WSS) area were analyzed. In all models, aneurysmal velocity and CN flow decreased after coiling, while low WSS area increased. However, with increasing PD, further reductions were observed in aneurysmal velocity and CN flow, but minimal changes were observed in low WSS area. Overall, coil PD had the greatest impact while dome size has greater impact than PV angle on aneurysmal hemodynamics. These findings lead to a conclusion that combinations of treatment goals and geometric factor may play key roles in coil embolization treatment outcomes, and support that different treatment timing may be a critical factor in treatment optimization.
ContributorsIndahlastari, Aprinda (Author) / Frakes, David (Thesis advisor) / Chong, Brian (Committee member) / Muthuswamy, Jitendran (Committee member) / Arizona State University (Publisher)
Created2013
153123-Thumbnail Image.png
Description
Stereolithography files (STL) are widely used in diverse fields as a means of describing complex geometries through surface triangulations. The resulting stereolithography output is a result of either experimental measurements, or computer-aided design. Often times stereolithography outputs from experimental means are prone to noise, surface irregularities and holes in an

Stereolithography files (STL) are widely used in diverse fields as a means of describing complex geometries through surface triangulations. The resulting stereolithography output is a result of either experimental measurements, or computer-aided design. Often times stereolithography outputs from experimental means are prone to noise, surface irregularities and holes in an otherwise closed surface.

A general method for denoising and adaptively smoothing these dirty stereolithography files is proposed. Unlike existing means, this approach aims to smoothen the dirty surface representation by utilizing the well established levelset method. The level of smoothing and denoising can be set depending on a per-requirement basis by means of input parameters. Once the surface representation is smoothened as desired, it can be extracted as a standard levelset scalar isosurface.

The approach presented in this thesis is also coupled to a fully unstructured Cartesian mesh generation library with built-in localized adaptive mesh refinement (AMR) capabilities, thereby ensuring lower computational cost while also providing sufficient resolution. Future work will focus on implementing tetrahedral cuts to the base hexahedral mesh structure in order to extract a fully unstructured hexahedra-dominant mesh describing the STL geometry, which can be used for fluid flow simulations.
ContributorsKannan, Karthik (Author) / Herrmann, Marcus (Thesis advisor) / Peet, Yulia (Committee member) / Frakes, David (Committee member) / Arizona State University (Publisher)
Created2014
153251-Thumbnail Image.png
Description
Objective: Examine cardiovascular response to OMT via central and peripheral measurements. Methods: Central and peripheral cardiovascular signals of asymptomatic human subjects were monitored during a procedure with alternating rest and active phases. Active phases included systemic perturbations and application of controlled vertebral pressure (OMT) by an experienced osteopathic physician. Pulse

Objective: Examine cardiovascular response to OMT via central and peripheral measurements. Methods: Central and peripheral cardiovascular signals of asymptomatic human subjects were monitored during a procedure with alternating rest and active phases. Active phases included systemic perturbations and application of controlled vertebral pressure (OMT) by an experienced osteopathic physician. Pulse plethysmograph and laser Doppler flow sensors measured peripheral flow from index and middle fingers bilaterally. A three-lead EKG monitored cardiac activity. The biosignals were recorded continuously, in real time, and analyzed in time and frequency domains. Results from the control group (n=11), without OMT, and active group (n=16), with OMT, were compared. Peripheral (n=5) and central responders (n=6), subsets of the active group showing stronger peripheral or central response, were examined. In an additional effort, a modified clinical device recorded spectral Doppler ultrasound signals of the radial and dorsalis pedis arteries of clinically asymptomatic human subjects. Controlled physiologic provocations (limb occlusion and elevation), were performed. Time domain and spectral analyses were completed. Results: In the human subject study, the time wave characteristics and spectral analysis resulted in similar trends. Peripheral blood flow attenuated in the control group over time, while it was maintained in the active group, and increased specifically during OMT in the responder groups. Heart rate remained around 65 BPM in the control group, fluctuated between 64-68 BPM in the active group, and dropped 4 and 3 BPM in the peripheral and central responder groups, respectively. The effect in the OMT group was statistically significant compared to no-OMT, however, was not statistically significant within-groups. For the preliminary spectral ultrasound Doppler study, segmental flow was successfully monitored. A prototype "Quick Assessment" tool was developed, providing instant post-processing results for clinical use. Conclusions: OMT along the vertebral column may influence autonomic processes that regulate heart rate and peripheral vascular flow.
ContributorsPedapati, Chandhana (Author) / Muthuswamy, Jitendra (Thesis advisor) / Makin, Inder (Committee member) / Frakes, David (Committee member) / Arizona State University (Publisher)
Created2014
Description
Single cell phenotypic heterogeneity studies reveal more information about the pathogenesis process than conventional bulk methods. Furthermore, investigation of the individual cellular response mechanism during rapid environmental changes can only be achieved at single cell level. By enabling the study of cellular morphology, a single cell three-dimensional (3D) imaging system

Single cell phenotypic heterogeneity studies reveal more information about the pathogenesis process than conventional bulk methods. Furthermore, investigation of the individual cellular response mechanism during rapid environmental changes can only be achieved at single cell level. By enabling the study of cellular morphology, a single cell three-dimensional (3D) imaging system can be used to diagnose fatal diseases, such as cancer, at an early stage. One proven method, CellCT, accomplishes 3D imaging by rotating a single cell around a fixed axis. However, some existing cell rotating mechanisms require either intricate microfabrication, and some fail to provide a suitable environment for living cells. This thesis develops a microvorterx chamber that allows living cells to be rotated by hydrodynamic alone while facilitating imaging access. In this thesis work, 1) the new chamber design was developed through numerical simulation. Simulations revealed that in order to form a microvortex in the side chamber, the ratio of the chamber opening to the channel width must be smaller than one. After comparing different chamber designs, the trapezoidal side chamber was selected because it demonstrated controllable circulation and met the imaging requirements. Microvortex properties were not sensitive to the chambers with interface angles ranging from 0.32 to 0.64. A similar trend was observed when chamber heights were larger than chamber opening. 2) Micro-particle image velocimetry was used to characterize microvortices and validate simulation results. Agreement between experimentation and simulation confirmed that numerical simulation was an effective method for chamber design. 3) Finally, cell rotation experiments were performed in the trapezoidal side chamber. The experimental results demonstrated cell rotational rates ranging from 12 to 29 rpm for regular cells. With a volumetric flow rate of 0.5 µL/s, an irregular cell rotated at a mean rate of 97 ± 3 rpm. Rotational rates can be changed by altering inlet flow rates.
ContributorsZhang, Wenjie (Author) / Frakes, David (Thesis advisor) / Meldrum, Deirdre (Thesis advisor) / Chao, Shih-hui (Committee member) / Wang, Xiao (Committee member) / Arizona State University (Publisher)
Created2011
151092-Thumbnail Image.png
Description
Recent advances in camera architectures and associated mathematical representations now enable compressive acquisition of images and videos at low data-rates. While most computer vision applications of today are composed of conventional cameras, which collect a large amount redundant data and power hungry embedded systems, which compress the collected data for

Recent advances in camera architectures and associated mathematical representations now enable compressive acquisition of images and videos at low data-rates. While most computer vision applications of today are composed of conventional cameras, which collect a large amount redundant data and power hungry embedded systems, which compress the collected data for further processing, compressive cameras offer the advantage of direct acquisition of data in compressed domain and hence readily promise to find applicability in computer vision, particularly in environments hampered by limited communication bandwidths. However, despite the significant progress in theory and methods of compressive sensing, little headway has been made in developing systems for such applications by exploiting the merits of compressive sensing. In such a setting, we consider the problem of activity recognition, which is an important inference problem in many security and surveillance applications. Since all successful activity recognition systems involve detection of human, followed by recognition, a potential fully functioning system motivated by compressive camera would involve the tracking of human, which requires the reconstruction of atleast the initial few frames to detect the human. Once the human is tracked, the recognition part of the system requires only the features to be extracted from the tracked sequences, which can be the reconstructed images or the compressed measurements of such sequences. However, it is desirable in resource constrained environments that these features be extracted from the compressive measurements without reconstruction. Motivated by this, in this thesis, we propose a framework for understanding activities as a non-linear dynamical system, and propose a robust, generalizable feature that can be extracted directly from the compressed measurements without reconstructing the original video frames. The proposed feature is termed recurrence texture and is motivated from recurrence analysis of non-linear dynamical systems. We show that it is possible to obtain discriminative features directly from the compressed stream and show its utility in recognition of activities at very low data rates.
ContributorsKulkarni, Kuldeep Sharad (Author) / Turaga, Pavan (Thesis advisor) / Spanias, Andreas (Committee member) / Frakes, David (Committee member) / Arizona State University (Publisher)
Created2012
150896-Thumbnail Image.png
Description
Human operators have difficulty driving cranes quickly, accurately, and safely because of the slow response of heavy crane structures, non-intuitive control interfaces, and payload oscillations. Recently, a novel hand-motion crane control system has been proposed to improve performance by coupling an intuitive control interface with an element that reduces the

Human operators have difficulty driving cranes quickly, accurately, and safely because of the slow response of heavy crane structures, non-intuitive control interfaces, and payload oscillations. Recently, a novel hand-motion crane control system has been proposed to improve performance by coupling an intuitive control interface with an element that reduces the complex oscillatory behavior of the payload. Hand-motion control allows operators to drive a crane by simply moving a hand-held radio-frequency tag through the desired path. Real-time location sensors are used to track the movements of the tag and the tag position is used in a feedback control loop to drive the crane. An input shaper is added to eliminate dangerous payload oscillations. However, tag position measurements are corrupted by noise. It is important to understand the noise properties so that appropriate filters can be designed to mitigate the effects of noise and improve tracking accuracy. This work discusses implementing filtering techniques to address the issue of noise in the operating environment. Five different filters are used on experimentally-acquired tag trajectories to reduce noise. The filtered trajectories are then used to drive crane simulations. Filter performance is evaluated with respect to the energy usage of the crane trolley, the settling time of the crane payload oscillations, and the safety corridor of the crane trajectory. The effects of filter window lengths on these parameters are also investigated. An adaptive filtering technique, namely the Kalman filter, adapts to the noise characteristics of the workspace to minimize the tag tracking error and performs better than the other filtering techniques examined.
ContributorsRagunathan, Sudarshan (Author) / Frakes, David (Thesis advisor) / Singhose, William (Committee member) / Tillery, Stephen Helms (Committee member) / Arizona State University (Publisher)
Created2012
151177-Thumbnail Image.png
Description
Single cell analysis has become increasingly important in understanding disease onset, progression, treatment and prognosis, especially when applied to cancer where cellular responses are highly heterogeneous. Through the advent of single cell computerized tomography (Cell-CT), researchers and clinicians now have the ability to obtain high resolution three-dimensional (3D) reconstructions of

Single cell analysis has become increasingly important in understanding disease onset, progression, treatment and prognosis, especially when applied to cancer where cellular responses are highly heterogeneous. Through the advent of single cell computerized tomography (Cell-CT), researchers and clinicians now have the ability to obtain high resolution three-dimensional (3D) reconstructions of single cells. Yet to date, no live-cell compatible version of the technology exists. In this thesis, a microfluidic chip with the ability to rotate live single cells in hydrodynamic microvortices about an axis parallel to the optical focal plane has been demonstrated. The chip utilizes a novel 3D microchamber design arranged beneath a main channel creating flow detachment into the chamber, producing recirculating flow conditions. Single cells are flowed through the main channel, held in the center of the microvortex by an optical trap, and rotated by the forces induced by the recirculating fluid flow. Computational fluid dynamics (CFD) was employed to optimize the geometry of the microchamber. Two methods for the fabrication of the 3D microchamber were devised: anisotropic etching of silicon and backside diffuser photolithography (BDPL). First, the optimization of the silicon etching conditions was demonstrated through design of experiment (DOE). In addition, a non-conventional method of soft-lithography was demonstrated which incorporates the use of two positive molds, one of the main channel and the other of the microchambers, compressed together during replication to produce a single ultra-thin (<200 µm) negative used for device assembly. Second, methods for using thick negative photoresists such as SU-8 with BDPL have been developed which include a new simple and effective method for promoting the adhesion of SU-8 to glass. An assembly method that bonds two individual ultra-thin (<100 µm) replications of the channel and the microfeatures has also been demonstrated. Finally, a pressure driven pumping system with nanoliter per minute flow rate regulation, sub-second response times, and < 3% flow variability has been designed and characterized. The fabrication and assembly of this device is inexpensive and utilizes simple variants of conventional microfluidic fabrication techniques, making it easily accessible to the single cell analysis community.
ContributorsMyers, Jakrey R (Author) / Meldrum, Deirdre (Thesis advisor) / Johnson, Roger (Committee member) / Frakes, David (Committee member) / Arizona State University (Publisher)
Created2012
151204-Thumbnail Image.png
Description
There is a growing interest for improved high-accuracy camera calibration methods due to the increasing demand for 3D visual media in commercial markets. Camera calibration is used widely in the fields of computer vision, robotics and 3D reconstruction. Camera calibration is the first step for extracting 3D data from a

There is a growing interest for improved high-accuracy camera calibration methods due to the increasing demand for 3D visual media in commercial markets. Camera calibration is used widely in the fields of computer vision, robotics and 3D reconstruction. Camera calibration is the first step for extracting 3D data from a 2D image. It plays a crucial role in computer vision and 3D reconstruction due to the fact that the accuracy of the reconstruction and 3D coordinate determination relies on the accuracy of the camera calibration to a great extent. This thesis presents a novel camera calibration method using a circular calibration pattern. The disadvantages and issues with existing state-of-the-art methods are discussed and are overcome in this work. The implemented system consists of techniques of local adaptive segmentation, ellipse fitting, projection and optimization. Simulation results are presented to illustrate the performance of the proposed scheme. These results show that the proposed method reduces the error as compared to the state-of-the-art for high-resolution images, and that the proposed scheme is more robust to blur in the imaged calibration pattern.
ContributorsPrakash, Charan Dudda (Author) / Karam, Lina J (Thesis advisor) / Frakes, David (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Arizona State University (Publisher)
Created2012