Matching Items (6)
Filtering by

Clear all filters

156726-Thumbnail Image.png
Description
Today, we use resources faster than they can be replaced. Construction consumes more resources than any other industry and has one of the largest waste streams. Resource consumption and waste generation are expected to grow as the global population increases. The circular economy (CE) is based on the concept of

Today, we use resources faster than they can be replaced. Construction consumes more resources than any other industry and has one of the largest waste streams. Resource consumption and waste generation are expected to grow as the global population increases. The circular economy (CE) is based on the concept of a closed-loop cycle (CLC) and proposes a solution that, in theory, can eliminate the environmental impacts caused by construction and demolition (C&D) waste and increase the efficiency of resources’ use. In a CLC, building materials are reused, remanufactured, recycled, and reintegrated into other buildings (or into other sectors) without creating any waste.

Designing out waste is the core principle of the CE. Design for disassembly or design for deconstruction (DfD) is the practice of planning the future deconstruction of a building and the reuse of its materials. Concepts like DfD, CE, and product-service systems (PSS) can work together to promote CLC in the built environment. PSS are business models based on stewardship instead of ownership. CE combines DfD, PSS, materials’ durability, and materials’ reuse in multiple life cycles to promote a low-carbon, regenerative economy. CE prioritizes reuse over recycling. Dealing with resource scarcity demands us to think beyond the incremental changes from recycling waste; it demands an urgent, systemic, and radical change in the way we design, build, and procure construction materials.

This dissertation aims to answer three research questions: 1) How can researchers estimate the environmental benefits of reusing building components, 2) What variables are susceptible to affect the environmental impact assessment of reuse, and 3) What are the barriers and opportunities for DfD and materials’ reuse in the current design practice in the United States.

The first part of this study investigated how different life cycle assessment (LCA) methods (i.e., hybrid LCA and process-based LCA), assumptions (e.g., reuse rates, transportation distances, number of reuses), and LCA timelines can affect the results of a closed-loop LCA. The second part of this study built on interviews with architects in the United States to understand why DfD is not part of the current design practice in the country.
ContributorsCruz Rios, Fernanda (Author) / Grau, David (Committee member) / Chong, Oswald (Committee member) / Parrish, Kristen (Committee member) / Arizona State University (Publisher)
Created2018
Description
Regulatory agencies, such as the Occupational Safety and Health Administration (OSHA), and the National Institute of Occupational Safety and Health (NIOSH), recognize that decisions regarding occupational health are often economically driven, with worker health only a secondary concern (Ruttenberg, 2014). To investigate the four National Occupational Research Agenda (NORA) long-standing

Regulatory agencies, such as the Occupational Safety and Health Administration (OSHA), and the National Institute of Occupational Safety and Health (NIOSH), recognize that decisions regarding occupational health are often economically driven, with worker health only a secondary concern (Ruttenberg, 2014). To investigate the four National Occupational Research Agenda (NORA) long-standing health concerns—welding fumes, crystalline silica, noise, and musculoskeletal disorders—a mixed methods research is conducted. Fourfold structuration, a holistic communication process with roots in indigenous/ancient knowledge, is used to organize data and facilitate making tangible relationships of health to productivity and profits that are abstract and often stated by industries, such as construction, as difficult to quantify. From both construction trade worker and occupational health and safety expert interviews data/codes are developed. For the qualitative method, the codes are organized into a constructivist grounded theory depicting the construction industry with regard to its foundation – profits. A theoretical exercise translating the qualitative codes into potential productivity losses is presented as a way for quantifying the abstract relationships of health to productivity. For the quantitative study, the data/codes are used to develop a comprehensive list of practices, barriers to, and catalysts for addressing health in construction. A significant quantitative finding is that occupational health and safety (OSH) experts are not traditionally involved at the highest levels of the OSHA Hierarchy of Controls, where the greatest opportunity to prevent exposure to health hazards is possible. Organized via a holistic framework, this research emphasizes our primary responsibility to each other as highlighted in recent NIOSH worker health agendas.
ContributorsTello, Linda Marguerite (Author) / Grau, David (Thesis advisor) / Koro-Ljungberg, Mirka (Committee member) / Hanemann, Michael (Committee member) / Chong, Oswald (Committee member) / Arizona State University (Publisher)
Created2017
189369-Thumbnail Image.png
Description
Large-scale civil infrastructure systems are critical for the functioning and development of any society. However, these systems are often vulnerable to degradation and the effects of aging, necessitating consistent monitoring and maintenance. Current methods for infrastructure maintenance primarily rely on human intervention and need the implementation of advanced sensing and

Large-scale civil infrastructure systems are critical for the functioning and development of any society. However, these systems are often vulnerable to degradation and the effects of aging, necessitating consistent monitoring and maintenance. Current methods for infrastructure maintenance primarily rely on human intervention and need the implementation of advanced sensing and computing technologies in field operations and maintenance (O&M) tasks. This research aimed to address these gaps and provide novel contributions. Specifically, the objectives of this study were to leverage artificial intelligence models to enhance point cloud noise processing, to automate tree species detection using Mask R-CNN, and to integrate imagery data and LiDAR datasets for real-time terrain analysis. First, the study proposed leverages neural networks to eliminate unwanted noise from point cloud datasets, enhancing the accuracy and reliability of infrastructure data. Secondly, the research integrated Mask R-CNN into automated tree species detection. This component offers an efficient solution to identify and classify vegetation surrounding infrastructure, enabling infrastructure managers to devise proactive vegetation management strategies, thereby reducing risks associated with tree-related incidents. Lastly, the study fused image and LiDAR datasets to support real-time terrain analysis. This integrated approach provides a comprehensive understanding of terrain characteristics, allowing infrastructure managers to assess slope, elevation, and other relevant factors, facilitating proactive maintenance interventions and mitigating risks associated with erosion. These contributions collectively underscore the potential of artificial intelligence models in advancing the operations and maintenance practices of large civil infrastructure systems. By leveraging these models, infrastructure managers can optimize decision-making processes, streamline maintenance efforts, and enhance critical infrastructure networks' overall resilience and sustainability.
ContributorsPaladugu, Bala Sai Krishna (Author) / Grau, David (Thesis advisor) / Ernzen, James (Committee member) / Standage, Richard (Committee member) / Arizona State University (Publisher)
Created2023
171621-Thumbnail Image.png
Description
Environmental concerns are increasingly becoming one of the most difficult challenges society faces during this century. From an economics perspective, this imposes the need to incorporate the environment as a relevant factor in the decision-making pro- cess in order to achieve the necessary efficiency that supports a sustainable future. This

Environmental concerns are increasingly becoming one of the most difficult challenges society faces during this century. From an economics perspective, this imposes the need to incorporate the environment as a relevant factor in the decision-making pro- cess in order to achieve the necessary efficiency that supports a sustainable future. This dissertation encompasses two essays that tackle environmental economic prob- lems using two different approaches, which ultimately complement each other in their outcomes. First, using a fully theoretical approach, I study how environmental cam- paigns from firms can impact their environmental reputation measured by the belief that consumers have about how clean their production technology is. I found that environmental campaigns can work as effective signals, fully revealing the firm’s type and allowing for novel reputation dynamics. Second, I take an empirical/quantitative approach to study how different types of water rights generate differences in the de- mand for water rights in Colorado. Using the most comprehensive data on water rights transactions in the US West, I can leverage a property of water rights to use the seller’s characteristics as instrumental variables to estimate the demand for water rights differentiated by type of water right. I provide, to the best of my knowledge, the first comparison of different water rights regimes within one overarching water market. I found that, as hypothesized in previous literature, more flexible water rights have higher demand thus moving more water at a given price. Taken together, these two essays show how relevant environmental topics are in a wide range of situations, providing new evidence on the incentives to build reputation once environmental ac- tions are taken into account, and also on how the demand for a natural resource is impacted by the rules that governs its usage and tradability.
ContributorsMesias Moreno, Jorge Andres (Author) / Hanemann, Michael (Thesis advisor) / Kuminoff, Nicolai V (Committee member) / Sheriff, Glenn (Committee member) / Arizona State University (Publisher)
Created2022
192995-Thumbnail Image.png
Description
Functioning freshwater ecosystems are widely recognized as a planetary boundary for the continued human inhabitation of our planet, but little is known about the tradeoffs at the nexus of food, energy and water. In this dissertation I explored the effects of hydrologic variability in the Lower Mekong Basin (LMB)

Functioning freshwater ecosystems are widely recognized as a planetary boundary for the continued human inhabitation of our planet, but little is known about the tradeoffs at the nexus of food, energy and water. In this dissertation I explored the effects of hydrologic variability in the Lower Mekong Basin (LMB) on rice production and functional structure of fish catches. I then examined the tradeoffs at the intersection of fish and rice harvest as a function of hydrologic variability and modeled production under novel engineered hydrologic scenarios. I modeled rice production using a Multivariate Autoregressive State Space (MARSS) model and mechanistically tested for the effect of saline intrusion. I found rice production to be heterogeneously affected by hydrology; in saline afflicted areas, floods had a positive effect size on production, whereas in non-saline afflicted areas, floods had a negative effect size on production. To address hydrologic filtering of the functional structure of fish catches, I collected thousands of specimens from over 100 LMB species in collaboration with Cambodia’s Inland Fisheries Research and Development institute and the Royal University of Agriculture. LMB fishes comprise a large portion of the 1,200 known species in the basin and have historically provided a substantial amount of animal protein to 60 million people in the region. Using an RLQ, co-inertia analysis, I found four functionally relevant morphological trats that were significantly associated with hydrologic variation—mouth position, maxillary length, relative body depth, and relative head depth. These traits are associated with many of the threated species in the LMB, which make up a large portion of the 1200 known species in the basin and have historically provided a substantial amount of animal protein to 60 million people in the region. To examine the tradeoffs within food systems, I used MARSS maximum likelihood estimation to forecast fish and rice production throughout the LMB under different hydrologic scenarios. I end my dissertation with an opinion piece on NexGen Mekong Scientists, a program I started in 2020 with funding from the United States Department of State.
ContributorsHolway, Joseph Henry (Author) / Sabo, John (Thesis advisor) / Grimm, Nancy (Committee member) / Holtgrieve, Gordon (Committee member) / Winemiller, Kirk (Committee member) / Hanemann, Michael (Committee member) / Arizona State University (Publisher)
Created2024
193014-Thumbnail Image.png
Description
The consequences of failures from large-diameter water pipelines can be severe. Results can include significant property damage, damage to adjacent infrastructure such as roads and bridges resulting in transportation delays or shutdowns, adjacent structural damage to buildings resulting in loss of business, service disruption to a significant number of

The consequences of failures from large-diameter water pipelines can be severe. Results can include significant property damage, damage to adjacent infrastructure such as roads and bridges resulting in transportation delays or shutdowns, adjacent structural damage to buildings resulting in loss of business, service disruption to a significant number of customers, loss of water, costly emergency repairs, and even loss of life. The American Water Works Association’s (AWWA) 2020 “State of the Water Industry” report states the top issue facing the water industry since 2016 is aging infrastructure, with the second being financing for improvements. The industry must find innovative ways to extend asset life and reduce maintenance expenditures. While are many different assets comprise the drinking water industry, pipelines are a major component and often neglected because they are typically buried. Reliability Centered Maintenance (RCM) is a process used to determine the most effective maintenance strategy for an asset, with the ultimate goal being to establish the required function of the asset with the required reliability at the lowest operations and maintenance costs. The RCM philosophy considers Preventive Maintenance, Predictive Maintenance, Condition Based Monitoring, Reactive Maintenance, and Proactive Maintenance techniques in an integrated manner to increase the probability an asset will perform its designed function throughout its design life with minimal maintenance. In addition to determining maintenance tasks, the timely performance of those tasks is crucial. If performed too late an asset may fail; if performed too early, resources that may be used better elsewhere are expended. Utility agencies can save time and money by using RCM analysis for their drinking water infrastructure. This dissertation reviews industries using RCM, discusses the benefits of an RCM analysis, and goes through a case study of an RCM at a large aqueduct in the United States. The dissertation further discusses the consequence of failure of large diameter water pipelines and proposes a regression model to help agencies determine the optimum time to perform maintenance tasks on large diameter prestressed concrete pipelines using RCM analysis.
ContributorsGeisbush, James R (Author) / Ariaratnam, Samuel T (Thesis advisor) / Grau, David (Committee member) / Chong, Oswald (Committee member) / Arizona State University (Publisher)
Created2024