Matching Items (17)
Filtering by

Clear all filters

152241-Thumbnail Image.png
Description
The efficacy of deep brain stimulation (DBS) in Parkinson's disease (PD) has been convincingly demonstrated in studies that compare motor performance with and without stimulation, but characterization of performance at intermediate stimulation amplitudes has been limited. This study investigated the effects of changing DBS amplitude in order to assess dose-response

The efficacy of deep brain stimulation (DBS) in Parkinson's disease (PD) has been convincingly demonstrated in studies that compare motor performance with and without stimulation, but characterization of performance at intermediate stimulation amplitudes has been limited. This study investigated the effects of changing DBS amplitude in order to assess dose-response characteristics, inter-subject variability, consistency of effect across outcome measures, and day-to-day variability. Eight subjects with PD and bilateral DBS systems were evaluated at their clinically determined stimulation (CDS) and at three reduced amplitude conditions: approximately 70%, 30%, and 0% of the CDS (MOD, LOW, and OFF, respectively). Overall symptom severity and performance on a battery of motor tasks - gait, postural control, single-joint flexion-extension, postural tremor, and tapping - were assessed at each condition using the motor section of the Unified Parkinson's Disease Rating Scale (UPDRS-III) and quantitative measures. Data were analyzed to determine whether subjects demonstrated a threshold response (one decrement in stimulation resulted in ≥ 70% of the maximum change) or a graded response to reduced stimulation. Day-to-day variability was assessed using the CDS data from the three testing sessions. Although the cohort as a whole demonstrated a graded response on several measures, there was high variability across subjects, with subsets exhibiting graded, threshold, or minimal responses. Some subjects experienced greater variability in their CDS performance across the three days than the change induced by reducing stimulation. For several tasks, a subset of subjects exhibited improved performance at one or more of the reduced conditions. Reducing stimulation did not affect all subjects equally, nor did it uniformly affect each subject's performance across tasks. These results indicate that altered recruitment of neural structures can differentially affect motor capabilities and demonstrate the need for clinical consideration of the effects on multiple symptoms across several days when selecting DBS parameters.
ContributorsConovaloff, Alison (Author) / Abbas, James (Thesis advisor) / Krishnamurthi, Narayanan (Committee member) / Mahant, Padma (Committee member) / Jung, Ranu (Committee member) / Helms Tillery, Stephen (Committee member) / Arizona State University (Publisher)
Created2013
152400-Thumbnail Image.png
Description
Advances in implantable MEMS technology has made possible adaptive micro-robotic implants that can track and record from single neurons in the brain. Development of autonomous neural interfaces opens up exciting possibilities of micro-robots performing standard electrophysiological techniques that would previously take researchers several hundred hours to train and achieve the

Advances in implantable MEMS technology has made possible adaptive micro-robotic implants that can track and record from single neurons in the brain. Development of autonomous neural interfaces opens up exciting possibilities of micro-robots performing standard electrophysiological techniques that would previously take researchers several hundred hours to train and achieve the desired skill level. It would result in more reliable and adaptive neural interfaces that could record optimal neural activity 24/7 with high fidelity signals, high yield and increased throughput. The main contribution here is validating adaptive strategies to overcome challenges in autonomous navigation of microelectrodes inside the brain. The following issues pose significant challenges as brain tissue is both functionally and structurally dynamic: a) time varying mechanical properties of the brain tissue-microelectrode interface due to the hyperelastic, viscoelastic nature of brain tissue b) non-stationarities in the neural signal caused by mechanical and physiological events in the interface and c) the lack of visual feedback of microelectrode position in brain tissue. A closed loop control algorithm is proposed here for autonomous navigation of microelectrodes in brain tissue while optimizing the signal-to-noise ratio of multi-unit neural recordings. The algorithm incorporates a quantitative understanding of constitutive mechanical properties of soft viscoelastic tissue like the brain and is guided by models that predict stresses developed in brain tissue during movement of the microelectrode. An optimal movement strategy is developed that achieves precise positioning of microelectrodes in the brain by minimizing the stresses developed in the surrounding tissue during navigation and maximizing the speed of movement. Results of testing the closed-loop control paradigm in short-term rodent experiments validated that it was possible to achieve a consistently high quality SNR throughout the duration of the experiment. At the systems level, new generation of MEMS actuators for movable microelectrode array are characterized and the MEMS device operation parameters are optimized for improved performance and reliability. Further, recommendations for packaging to minimize the form factor of the implant; design of device mounting and implantation techniques of MEMS microelectrode array to enhance the longevity of the implant are also included in a top-down approach to achieve a reliable brain interface.
ContributorsAnand, Sindhu (Author) / Muthuswamy, Jitendran (Thesis advisor) / Tillery, Stephen H (Committee member) / Buneo, Christopher (Committee member) / Abbas, James (Committee member) / Tsakalis, Konstantinos (Committee member) / Arizona State University (Publisher)
Created2013
151271-Thumbnail Image.png
Description
Humans moving in the environment must frequently change walking speed and direction to negotiate obstacles and maintain balance. Maneuverability and stability requirements account for a significant part of daily life. While constant-average-velocity (CAV) human locomotion in walking and running has been studied extensively unsteady locomotion has received far less attention.

Humans moving in the environment must frequently change walking speed and direction to negotiate obstacles and maintain balance. Maneuverability and stability requirements account for a significant part of daily life. While constant-average-velocity (CAV) human locomotion in walking and running has been studied extensively unsteady locomotion has received far less attention. Although some studies have described the biomechanics and neurophysiology of maneuvers, the underlying mechanisms that humans employ to control unsteady running are still not clear. My dissertation research investigated some of the biomechanical and behavioral strategies used for stable unsteady locomotion. First, I studied the behavioral level control of human sagittal plane running. I tested whether humans could control running using strategies consistent with simple and independent control laws that have been successfully used to control monopod robots. I found that humans use strategies that are consistent with the distributed feedback control strategies used by bouncing robots. Humans changed leg force rather than stance duration to control center of mass (COM) height. Humans adjusted foot placement relative to a "neutral point" to change running speed increment between consecutive flight phases, i.e. a "pogo-stick" rather than a "unicycle" strategy was adopted to change running speed. Body pitch angle was correlated by hip moments if a proportional-derivative relationship with time lags corresponding to pre-programmed reaction (87 ± 19 ms) was assumed. To better understand the mechanisms of performing successful maneuvers, I studied the functions of joints in the lower extremities to control COM speed and height. I found that during stance, the hip functioned as a power generator to change speed. The ankle switched between roles as a damper and torsional spring to contributing both to speed and elevation changes. The knee facilitated both speed and elevation control by absorbing mechanical energy, although its contribution was less than hip or ankle. Finally, I studied human turning in the horizontal plane. I used a morphological perturbation (increased body rotational inertia) to elicit compensational strategies used to control sidestep cutting turns. Humans use changes to initial body angular speed and body pre-rotation to prevent changes in braking forces.
ContributorsQiao, Mu, 1981- (Author) / Jindrich, Devin L (Thesis advisor) / Dounskaia, Natalia (Committee member) / Abbas, James (Committee member) / Hinrichs, Richard (Committee member) / Santello, Marco (Committee member) / Arizona State University (Publisher)
Created2012
151099-Thumbnail Image.png
Description
Spinal cord injury (SCI) disrupts the communication between supraspinal circuits and spinal circuits distal to the injury. This disruption causes changes in the motor abilities of the affected individual, but it can also be used as an opportunity to study motor control in the absence or limited presence of control

Spinal cord injury (SCI) disrupts the communication between supraspinal circuits and spinal circuits distal to the injury. This disruption causes changes in the motor abilities of the affected individual, but it can also be used as an opportunity to study motor control in the absence or limited presence of control from the brain. In the case of incomplete paraplegia, locomotion is impaired and often results in increased incidence of foot drag and decreased postural stability after injury. The overall goal of this work is to understand how changes in kinematics of movement and neural control of muscles effect locomotor coordination following SCI. Toward this end, we examined musculoskeletal parameters and kinematics of gait in rats with and without incomplete SCI (iSCI) and used an empirically developed computational model to test related hypotheses. The first study tested the hypothesis that iSCI causes a decrease in locomotor and joint angle movement complexity. A rat model was used to measure musculoskeletal properties and gait kinematics following mild iSCI. The data indicated joint-specific changes in kinematics in the absence of measurable muscle atrophy, particularly at the ankle as a result of the injury. Kinematic changes manifested as a decrease in complexity of ankle motion as indicated by measures of permutation entropy. In the second study, a new 2-dimensional computational model of the rat ankle combining forward and inverse dynamics was developed using the previously collected data. This model was used to test the hypothesis that altered coordination of flexor and extensor muscles (specifically alteration in burst shape and timing) acting at the ankle joint could be responsible for increases in incidence of foot drag following injury. Simulation results suggest a time course for changes in neural control following injury that begins with foot drag and decreased delay between antagonistic muscle activations. Following this, beneficial adaptations in muscle activation profile and ankle kinematics counteract the decreased delay to allow foot swing. In both studies, small changes in neural control caused large changes in behavior, particularly at the ankle. Future work will further examine the role of neural control of hindlimb in rat locomotion following iSCI.
ContributorsHillen, Brian (Author) / Jung, Ranu (Thesis advisor) / Abbas, James (Committee member) / Muthuswamy, Jit (Committee member) / Jindrich, Devin (Committee member) / Yamaguchi, Gary (Committee member) / Arizona State University (Publisher)
Created2012
171607-Thumbnail Image.png
Description
Nearly one percent of the population over 65 years of age is living with Parkinson’s disease (PD) and this population worldwide is projected to be approximately nine million by 2030. PD is a progressive neurological disease characterized by both motor and cognitive impairments. One of the most serious challenges for

Nearly one percent of the population over 65 years of age is living with Parkinson’s disease (PD) and this population worldwide is projected to be approximately nine million by 2030. PD is a progressive neurological disease characterized by both motor and cognitive impairments. One of the most serious challenges for an individual as the disease progresses is the increasing severity of gait and posture impairments since they result in debilitating conditions such as freezing of gait, increased likelihood of falls, and poor quality of life. Although dopaminergic therapy and deep brain stimulation are generally effective, they often fail to improve gait and posture deficits. Several recent studies have employed real-time feedback (RTF) of gait parameters to improve walking patterns in PD. In earlier work, results from the investigation of the effects of RTF of step length and back angle during treadmill walking demonstrated that people with PD could follow the feedback and utilize it to modulate movements favorably in a manner that transferred, at least acutely, to overground walking. In this work, recent advances in wearable technologies were leveraged to develop a wearable real-time feedback (WRTF) system that can monitor and evaluate movements and provide feedback during daily activities that involve overground walking. Specifically, this work addressed the challenges of obtaining accurate gait and posture measures from wearable sensors in real-time and providing auditory feedback on the calculated real-time measures for rehabilitation. An algorithm was developed to calculate gait and posture variables from wearable sensor measurements, which were then validated against gold-standard measurements. The WRTF system calculates these measures and provides auditory feedback in real-time. The WRTF system was evaluated as a potential rehabilitation tool for use by people with mild to moderate PD. Results from the study indicated that the system can accurately measure step length and back angle, and that subjects could respond to real-time auditory feedback in a manner that improved their step length and uprightness. These improvements were exhibited while using the system that provided feedback and were sustained in subsequent trials immediately thereafter in which subjects walked without receiving feedback from the system.
ContributorsMuthukrishnan, Niveditha (Author) / Abbas, James (Thesis advisor) / Krishnamurthi, Narayanan (Thesis advisor) / Shill, Holly A (Committee member) / Honeycutt, Claire (Committee member) / Turaga, Pavan (Committee member) / Ingalls, Todd (Committee member) / Arizona State University (Publisher)
Created2022
190947-Thumbnail Image.png
Description
Non-invasive visualization of the trigeminal nerve through advanced MR sequences and methods like tractography is important for studying anatomical and microstructural changes due to pathology like trigeminal neuralgia (TN), facial dystonia, multiple sclerosis, and for surgical pre-planning. The use of specific anatomical markers from CT, MPRAGE and cranial nerve imaging

Non-invasive visualization of the trigeminal nerve through advanced MR sequences and methods like tractography is important for studying anatomical and microstructural changes due to pathology like trigeminal neuralgia (TN), facial dystonia, multiple sclerosis, and for surgical pre-planning. The use of specific anatomical markers from CT, MPRAGE and cranial nerve imaging (CRANI) sequences, enabled successful tractography of patient-specific trajectory of the frontal, nasociliary, infraorbital, and mandibular nerve branches extending beyond the cisternal brain stem region and leading to the face. Performance of MPRAGE sequence together with the advanced T2-weighted CRANI sequence with and without a gadolinium contrast agent, was studied to characterize identification efficiency in smaller nerve structures in the extremities. A large FOV nerve visualization exam inclusive of the anatomy of all trigeminal nerve distal branches can be obtained within an acquisition time of 20 minutes using pre-contrast CRANI and MPRAGE. Post-processing with MPR and MIP images improved nerve visualization.Transcranial electrical stimulation techniques (TES) have been used for the treatment of multiple neurodegenerative diseases. These techniques involve placing electrodes on the scalp with multiple peripheral branches of the trigeminal nerve crossing directly under that may be stimulated. This was studied through hybrid computational realistic axon models. These models also facilitated studying the effects of electrode drift during experiments on the recruitment of peripheral nerves. An optimal point of lowest threshold was found while displacing the nerve horizontally i.e., the activation thresholds of both myelinated and unmyelinated axons increased when the electrodes were displaced medially and decreased to a certain extend when the electrodes were displaced laterally, after which further lateral displacement led to increase of thresholds. Inclusion of unmyelinated axons in the modeling provided the capability of finding maximum stimulation amplitude below which side effects like pain sensation may be avoided. In the case of F3 – F4 electrode montage the maximum amplitude was 2.39 mA and in case of RS – LS montage the maximum amplitude was 2.44 mA. Such modeling studies may be useful for personalization of TES devices for finding optimal positioning of electrodes with respect to target and stimulation amplitude range that minimizes side effects.
ContributorsSahu, Sulagna (Author) / Sadleir, Rosalind (Thesis advisor) / Tillery, Stephen H (Committee member) / Crook, Sharon (Committee member) / Beeman, Scott (Committee member) / Abbas, James (Committee member) / Arizona State University (Publisher)
Created2023
171934-Thumbnail Image.png
Description
Safety and efficacy of neuromodulation are influenced by abiotic factors like failure of implants, biotic factors like tissue damage, and molecular and cellular mechanisms of neuromodulation. Accelerated lifetime test (ALT) predict lifetime of implants by accelerating failure modes in controlled bench-top conditions. Current ALT models do not capture failure modes

Safety and efficacy of neuromodulation are influenced by abiotic factors like failure of implants, biotic factors like tissue damage, and molecular and cellular mechanisms of neuromodulation. Accelerated lifetime test (ALT) predict lifetime of implants by accelerating failure modes in controlled bench-top conditions. Current ALT models do not capture failure modes involving biological mechanisms. First part of this dissertation is focused on developing ALTs for predicting failure of chronically implanted tungsten stimulation electrodes. Three factors used in ALT are temperature, H2O2 concentration, and amount of charge delivered through electrode to develop a predictive model of lifetime for stimulation electrodes. Second part of this dissertation is focused on developing a novel method for evaluating tissue response to implants and electrical stimulation. Current methods to evaluate tissue damage in the brain require invasive and terminal procedures that have poor clinical translation. I report a novel non-invasive method that sampled peripheral blood monocytes (PBMCs) and used enzyme-linked immunoassay (ELISA) to assess level of glial fibrillary acidic protein (GFAP) expression and fluorescence-activated cell sorting (FACS) to quantify number of GFAP expressing PBMCs. Using this method, I was able to detect and quantify GFAP expression in PBMCs. However, there was no statistically significant difference in GFAP expression between stimulatory and non-stimulatory implants. Final part of this dissertation assessed molecular and cellular mechanisms of non-invasive ultrasound neuromodulation approach. Unlike electrical stimulation, cellular mechanisms of ultrasound-based neuromodulation are not fully known. Final part of this dissertation assessed role of mechanosensitive ion channels and neuronal nitric oxide production in cell cultures under ultrasound excitation. I used fluorescent imaging to quantify expression of nitric oxide in neuronal cell cultures in response to ultrasound stimulation. Results from these experiments indicate that neuronal nitric oxide production increased in response to ultrasound stimulation compared to control and decreased when mechanosensitive ion channels were suppressed. Two novel methods developed in this dissertation enable assessment of lifetime and safety of neuromodulation techniques that use electrical stimulation through implants. The final part of this dissertation concludes that non-invasive ultrasound neuromodulation may be mediated through neuronal nitric oxide even in absence of activation of mechanosensitive ion channels.
ContributorsVoziyanov, Vladislav (Author) / Muthuswamy, Jitendran (Thesis advisor) / Smith, Barbara (Committee member) / Greger, Bradley (Committee member) / Abbas, James (Committee member) / Okandan, Murat (Committee member) / Arizona State University (Publisher)
Created2022
168447-Thumbnail Image.png
Description
For two centuries, electrical stimulation has been the conventional method for interfacing with the nervous system. As interfaces with the peripheral nervous system become more refined and higher-resolution, several challenges appear, including immune responses to invasive electrode application, large-to-small axon recruitment order, and electrode size-dependent spatial selectivity. Optogenetics offers a

For two centuries, electrical stimulation has been the conventional method for interfacing with the nervous system. As interfaces with the peripheral nervous system become more refined and higher-resolution, several challenges appear, including immune responses to invasive electrode application, large-to-small axon recruitment order, and electrode size-dependent spatial selectivity. Optogenetics offers a solution that is less invasive, more tissue-selective, and has small-to-large axon recruitment order. By adding genes to express photosensitive proteins optogenetics provides neuroscientists the ability to genetically select cell populations to stimulate with simple illumination. However, optogenetic stimulation of peripheral nerves uses diffuse light to activate the photosensitive neural cell lines. To increase the specificity of stimulus response, research was conducted to test the hypothesis that multiple, focused light emissions placed around the circumference of optogenetic mouse sciatic nerve could be driven to produce differential responses in hindlimb motor movement depending on the pattern of light presented. A Monte Carlo computer simulation was created to model the number of emitters, the light emission size, and the focal power of accompanying micro-lenses to provide targeted stimulation to select regions within the sciatic nerve. The computer simulation results were used to parameterize the design of micro-lenses. By modeling multiple focused beams, only fascicles within a nerve diameter less than 1 mm are expected to be fully accessible to focused optical stimulation; a minimum of 4 light sources is required to generate a photon intensity at a point in a nerve over the initial contact along its surface. To elicit the same effect in larger nerves, focusing lenses would require a numerical aperture > 1. Microlenses which met the simulation requirements were fabricated and deployed on a flexible nerve cuff which was used to stimulate the sciatic nerve in optogenetic mice. Motor neuron responses from this stimulation were compared to global illumination; stimulation using the optical cuff resulted in fine motor movement of the extensor muscles of the digits in the hindlimb. Increasing optical power resulted in a shift to gross motor movement of hindlimb. Finally, varying illumination intensity across the cuff showed changes in the extension of individual digits.
ContributorsFritz, Nicholas (Author) / Blain Christen, Jennifer (Thesis advisor) / Abbas, James (Committee member) / Goryll, Michael (Committee member) / Sadleir, Rosalind (Committee member) / Helms-Tillery, Stephen (Committee member) / Arizona State University (Publisher)
Created2021
187363-Thumbnail Image.png
Description
Finite element models (FEMs) of spine segments validated in their intact states are often used to make predictions following structural modifications simulating surgical procedures, including posterior fusion with pedicle screws and rods (PSR) and laminectomy (removal of posterior column bone to decompress the spinal cord). The gold standard for spine

Finite element models (FEMs) of spine segments validated in their intact states are often used to make predictions following structural modifications simulating surgical procedures, including posterior fusion with pedicle screws and rods (PSR) and laminectomy (removal of posterior column bone to decompress the spinal cord). The gold standard for spine FEM validation compares predicted vs. experimental intervertebral ranges of motion (ROM). Given that muscle co-contraction compresses the spine, validation that considers compression may produce a more robust FEM. One research goal was to evaluate an experimental method of compressing a lumbar spine segment through its sagittal plane balance (pivot) point (BP) using a 6DOF robotic test system. Experimental data supported the hypothesis that structural modifications, such as PSR and laminectomy alter the segment’s BP location and its compressive stiffness. However, evaluation showed that the experimental BP method is sensitive to specimen posture in the robotic test frame; slight flexion or extension produced shear loads during compression that affect BP location and should be included in specimen-specific FEMs to ensure similar load conditions. Another goal was to develop a uniquely calibrated specimen-specific FEM of an intact L4-5 motion segment using the experimental BP data. A specimen-specific FEM was created and calibrated using experimental BP compressive stiffness data, however matching experimental BP location data was unsuccessful. The BP-compression calibrated FEM was evaluated by comparing predicted responses to loads following simulated PSR and laminectomy to specimen-specific experimental data. Predictions using the BP-calibrated and ROM-calibrated FEMs were compared. The BP-calibration process helped identify an unrealistic FEM disc geometry (nucleus pulposus size and location). Both BP-compression and ROM-calibrated FEMs predicted effects of PSR on stiffness (compressive and flexural) that were greater than experimental, which helped identify a problem with simplified representations of bone in the posterior column and at the anterior column interface. The BP-compression calibrated FEMs predicted relative shifts in BP locations and bone surface strains during compression that were closer to experimental data than similarly modified ROM-calibrated FEMs. Collectively, these results support the use of BP measures in experimental and model-based investigations of surgical modifications of the spine.
ContributorsSawa, Anna Genowefa Ulrika (Author) / Abbas, James (Thesis advisor) / Crawford, Neil R (Thesis advisor) / Kelly, Brian P (Committee member) / Helms-Tillery, Stephen (Committee member) / Sadleir, Rosalind (Committee member) / Arizona State University (Publisher)
Created2023
156986-Thumbnail Image.png
Description
Intracellular voltage recordings from single neurons in vitro and in vivo have been fundamental to our understanding of neuronal function. Conventional electrodes and associated positioning systems for intracellular recording in vivo are large and bulky, which has largely restricted their use to single-channel recording from anesthetized animals. Further, intracellular recordings

Intracellular voltage recordings from single neurons in vitro and in vivo have been fundamental to our understanding of neuronal function. Conventional electrodes and associated positioning systems for intracellular recording in vivo are large and bulky, which has largely restricted their use to single-channel recording from anesthetized animals. Further, intracellular recordings are very cumbersome, requiring a high degree of skill not readily achieved in a typical laboratory. This dissertation presents a robotic, head-mountable, MEMS (Micro-Electro-Mechanical Systems) based intracellular recording system to overcome the above limitations associated with form-factor, scalability and highly skilled and tedious manual operations required for intracellular recordings. This system combines three distinct technologies: 1) novel microscale, polycrystalline silicon-based electrode for intracellular recording, 2) electrothermal microactuators for precise microscale navigation of the electrode and 3) closed-loop control algorithm for autonomous movement and positioning of electrode inside single neurons. First, two distinct designs of polysilicon-based microscale electrodes were fabricated and tested for intracellular recordings. In the first approach, tips of polysilicon microelectrodes were milled to nanoscale dimensions (<300 nm) using focused ion beam (FIB) to develop polysilicon nanoelectrodes. Polysilicon nanoelectrodes recorded >1.5 mV amplitude, positive-going action potentials and synaptic potentials from neurons in the abdominal ganglion of Aplysia Californica. In the second approach, polysilicon microelectrodes were integrated with miniaturized glass micropipettes filled with electrolyte to fabricate glass-polysilicon microelectrodes. These electrodes consistently recorded high fidelity intracellular potentials from neurons in the abdominal ganglion of Aplysia Californica (Resting Potentials < -35 mV, Action Potentials > 60 mV) as well as the rat motor cortex (Resting Potentials < -50 mV). Next, glass-polysilicon microelectrodes were coupled with microscale electrothermal actuators and controller for autonomous intracellular recordings from single neurons in the abdominal ganglion. Consistent resting potentials (< -35 mV) and action potentials (> 60 mV) were recorded after each successful penetration attempt with the controller and microactuated glass-polysilicon microelectrodes. The success rate of penetration and quality of recordings achieved using electrothermal microactuators were comparable to that of conventional positioning systems. Finally, the feasibility of this miniaturized system to obtain intracellular recordings from single neurons in the motor cortex of rats in vivo is also demonstrated. The MEMS-based system offers significant advantages: 1) reduction in overall size for potential use in behaving animals, 2) scalable approach to potentially realize multi-channel recordings and 3) a viable method to fully automate measurement of intracellular recordings.
ContributorsSampath Kumar, Swathy (Author) / Muthuswamy, Jit (Thesis advisor) / Abbas, James (Committee member) / Hamm, Thomas (Committee member) / Christen, Jennifer Blain (Committee member) / Buneo, Christopher (Committee member) / Arizona State University (Publisher)
Created2018