Matching Items (5)
Filtering by

Clear all filters

151877-Thumbnail Image.png
Description
The Southwestern Willow Flycatcher (Empidonax traillii extimus) has been studied for over two decades and listed as endangered for most of that time. Though the flycatcher has been granted protected status since 1995, critical habitat designation for the flycatcher has not shared the same history. Critical habitat designation is essential

The Southwestern Willow Flycatcher (Empidonax traillii extimus) has been studied for over two decades and listed as endangered for most of that time. Though the flycatcher has been granted protected status since 1995, critical habitat designation for the flycatcher has not shared the same history. Critical habitat designation is essential for achieving the long-term goals defined in the flycatcher recovery plan where emphasis is on both the protection of this species and "the habitats supporting these flycatchers [that] must be protected from threats and loss" (U.S. Fish and Wildlife Service 2002). I used a long-term data set of habitat characteristics collected at three study areas along the Lower Colorado River to develop a method for quantifying habitat quality for flycatcher. The data set contained flycatcher nest observations (use) and habitat availability (random location) from 2003-2010 that I statistically analyzed for flycatcher selection preferences. Using both Pearson's Chi-square test and SPSS Principal Component Analysis (PCA) I determined that flycatchers were selecting 30 habitat traits significantly different among an initial list of 127 habitat characteristics. Using PCA, I calculated a weighted value of influence for each significant trait per study area and used those values to develop a habitat classification system to build predictive models for flycatcher habitat quality. I used ArcGIS® Model Builder to develop three habitat suitability models for each of the habitat types occurring in western riparian systems, native, mixed exotic and exotic dominated that are frequented by breeding flycatchers. I designed a fourth model, Topock Marsh, to test model accuracy on habitat quality for flycatchers using reserved accuracy assessment points of previous nest locations. The results of the fourth model accurately predicted a decline in habitat at Topock Marsh that was confirmed by SWCA survey reports released in 2011 and 2012 documenting a significant decline in flycatcher productivity in the Topock Marsh study area.
ContributorsChenevert-Steffler, Ann (Author) / Miller, William (Thesis advisor) / Bateman, Heather (Committee member) / Alford, Eddie (Committee member) / Arizona State University (Publisher)
Created2013
151334-Thumbnail Image.png
Description
Biological diversity is threatened by increasing anthropogenic modification of natural environments and increasing demands on natural resources. Sonoran desert tortoises (Gopherus morafkai) currently have Candidate status under the Endangered Species Act (ESA) based on health and habitat threats. To ensure this animal persists in the midst of multiple threats requires

Biological diversity is threatened by increasing anthropogenic modification of natural environments and increasing demands on natural resources. Sonoran desert tortoises (Gopherus morafkai) currently have Candidate status under the Endangered Species Act (ESA) based on health and habitat threats. To ensure this animal persists in the midst of multiple threats requires an understanding of the life history and ecology of each population. I looked at one physiological and one behavioral aspect of a population of tortoises at the Sugarloaf Mountain (SL) study site in central Arizona, USA. I used 21 years of capture-recapture records to estimate growth parameters of the entire population. I investigated habitat selection of juvenile tortoises by selecting 117 locations of 11 tortoises that had been tracked by radio-telemetry one to three times weekly for two years, selecting locations from both summer active season and during winter hibernation. I compared 22 microhabitat variables of tortoise locations to random SL locations to determine habitat use and availability. Male tortoises at SL reach a greater asymptotic length than females, and males and females appear to grow at the same rate. Juvenile tortoises at the SL site use steep rocky hillsides with high proportions of sand and annual vegetation, few succulents, and enclosed shelters in summer. They use enclosed shelters on steep slopes for winter hibernation. An understanding of these features can allow managers to quantify Sonoran desert tortoise habitat needs and life history characteristics and to understand the impact of land use policies.
ContributorsBridges, Andrew (Author) / Bateman, Heather L (Thesis advisor) / Miller, William (Committee member) / Ulrich, Jon (Committee member) / Arizona State University (Publisher)
Created2012
152427-Thumbnail Image.png
Description
Consideration of both biological and human-use dynamics in coupled social-ecological systems is essential for the success of interventions such as marine reserves. As purely human institutions, marine reserves have no direct effects on ecological systems. Consequently, the success of a marine reserve depends on managers` ability to alter human behavior

Consideration of both biological and human-use dynamics in coupled social-ecological systems is essential for the success of interventions such as marine reserves. As purely human institutions, marine reserves have no direct effects on ecological systems. Consequently, the success of a marine reserve depends on managers` ability to alter human behavior in the direction and magnitude that supports reserve objectives. Further, a marine reserve is just one component in a larger coupled social-ecological system. The social, economic, political, and biological landscape all determine the social acceptability of a reserve, conflicts that arise, how the reserve interacts with existing fisheries management, accuracy of reserve monitoring, and whether the reserve is ultimately able to meet conservation and fishery enhancement goals. Just as the social-ecological landscape is critical at all stages for marine reserve, from initial establishment to maintenance, the reserve in turn interacts with biological and human use dynamics beyond its borders. Those interactions can lead to the failure of a reserve to meet management goals, or compromise management goals outside the reserve. I use a bio-economic model of a fishery in a spatially patchy environment to demonstrate how the pre-reserve fisheries management strategy determines the pattern of fishing effort displacement once the reserve is established, and discuss the social, political, and biological consequences of different patterns for the reserve and the fishery. Using a stochastic bio-economic model, I demonstrate how biological and human use connectivity can confound the accurate detection of reserve effects by violating assumptions in the quasi-experimental framework. Finally, I examine data on recreational fishing site selection to investigate changes in response to the announcement of enforcement of a marine reserve in the Gulf of California, Mexico. I generate a scale of fines that would fully or partially protect the reserve, providing a data-driven way for managers to balance biological and socio-economic goals. I suggest that natural resource managers consider human use dynamics with the same frequency, rigor, and tools as they do biological stocks.
ContributorsFujitani, Marie (Author) / Abbott, Joshua (Thesis advisor) / Fenichel, Eli (Thesis advisor) / Gerber, Leah (Committee member) / Anderies, John (Committee member) / Arizona State University (Publisher)
Created2014
150033-Thumbnail Image.png
Description
Populations of resident Canada geese (Branta canadensis) that nest and reside within the contiguous United States have increased at a rate of 7.9% per year to over 3.5 million over the last few decades. Enlarged population levels have resulted in conflicts between geese and humans, including property damage and human

Populations of resident Canada geese (Branta canadensis) that nest and reside within the contiguous United States have increased at a rate of 7.9% per year to over 3.5 million over the last few decades. Enlarged population levels have resulted in conflicts between geese and humans, including property damage and human health and safety concerns. Noticeable growth of the population of Canada geese in the Indian Bend Wash area of Scottsdale, AZ has been observed in recent years sparking concern that this population will continue to grow at high rates as seen in other urban areas throughout North America. This study was initiated to determine the current population structure, distribution, and productivity of this population of resident geese. During the 2009 to 2010 post-breeding molt, 255 geese were captured and affixed with neck collars allowing individual identification. I conducted surveys from October 2008 to September 2010 and calculated weekly population estimates from mark recapture survey data using the Lincoln-Peterson method. Productivity was also investigated. Nesting was largely limited to one island within the study area, suggesting geese preferentially nest in insular areas to avoid human disturbance. Despite limited nesting opportunities, there was a significant population increase of 15 to 25% from 2009 to 2010 based on population estimates. Goose movement patterns indicate this population has a high level of site fidelity to nesting and molting areas, as has been found in other studies of resident Canada geese. I suggest that management should be implemented to 1) reduce the current population of resident geese through adult removal and 2) limit future recruitment into the population through control of reproduction and habitat modification.
ContributorsRay, Elizabeth (Author) / Miller, William (Thesis advisor) / Cunningham, Stanley (Committee member) / Bateman, Heather (Committee member) / Arizona State University (Publisher)
Created2011
154580-Thumbnail Image.png
Description
The plateau pika (Ochotona curzoniae), a small burrowing lagomorph that occupies the high alpine grassland ecosystems of the Qinghai-Tibetan Plateau in western China, remains a controversial subject among policymakers and researchers. One line of evidence points to pikas being a pest, which has led to massive attempts to eradicate pika

The plateau pika (Ochotona curzoniae), a small burrowing lagomorph that occupies the high alpine grassland ecosystems of the Qinghai-Tibetan Plateau in western China, remains a controversial subject among policymakers and researchers. One line of evidence points to pikas being a pest, which has led to massive attempts to eradicate pika populations. Another point of view is that pikas are a keystone species and an ecosystem engineer in the grassland ecosystem of the QTP. The pika eradication program raises a difficult ethical and religious dilemma for local pastoralists, and is criticized for not being supported by scientific evidence. Complex interactions between pikas, livestock, and habitat condition are poorly understood. My dissertation research examines underpinning justifications of the pika poisoning program leading to these controversies. I investigated responses of pikas to habitat conditions with field experimental manipulations, and mechanisms of pika population recovery following pika removal. I present policy recommendations based on an environmental ethics framework and findings from the field experiments. After five years of a livestock grazing exclusion experiment and four years of pika monitoring, I found that grazing exclusion resulted in a decline of pika habitat use, which suggests that habitat conditions determine pika population density. I also found that pikas recolonized vacant burrow systems following removal of residents, but that distances travelled by dispersing pikas were extremely short (~50 m). Thus, current pika eradication programs, if allowed to continue, could potentially compromise local populations as well as biodiversity conservation on the QTP. Lethal management of pikas is a narrowly anthropocentric-based form of ecosystem management that has excluded value-pluralism, such as consideration of the intrinsic value of species and the important ecological role played by pikas. These conflicting approaches have led to controversies and policy gridlock. In response, I suggest that the on-going large-scale pika eradication program needs reconsideration. Moderation of stocking rates is required in degraded pika habitats, and Integrated Pest Management may be required when high stocking rate and high pika density coexist. A moderate level of livestock and pika density can be consistent with maintaining the integrity and sustainability of the QTP alpine steppe ecosystem.
ContributorsBadingqiuying (Author) / Smith, Andrew T. (Thesis advisor) / Wu, Jianguo (Committee member) / Minteer, Ben (Committee member) / Anderies, John (Committee member) / Harris, Richard B. (Committee member) / Arizona State University (Publisher)
Created2016