Matching Items (4)
Filtering by

Clear all filters

150301-Thumbnail Image.png
Description
This thesis focuses on the theoretical work done to determine thermodynamic properties of a chalcopyrite thin-film material for use as a photovoltaic material in a tandem device. The material of main focus here is ZnGeAs2, which was chosen for the relative abundance of constituents, favorable photovoltaic properties, and good lattice

This thesis focuses on the theoretical work done to determine thermodynamic properties of a chalcopyrite thin-film material for use as a photovoltaic material in a tandem device. The material of main focus here is ZnGeAs2, which was chosen for the relative abundance of constituents, favorable photovoltaic properties, and good lattice matching with ZnSnP2, the other component in this tandem device. This work is divided into two main chapters, which will cover: calculations and method to determine the formation energy and abundance of native point defects, and a model to calculate the vapor pressure over a ternary material from first-principles. The purpose of this work is to guide experimental work being done in tandem to synthesize ZnGeAs2 in thin-film form with high enough quality such that it can be used as a photovoltaic. Since properties of photovoltaic depend greatly on defect concentrations and film quality, a theoretical understanding of how laboratory conditions affect these properties is very valuable. The work done here is from first-principles and utilizes density functional theory using the local density approximation. Results from the native point defect study show that the zinc vacancy (VZn) and the germanium antisite (GeZn) are the more prominent defects; which most likely produce non-stoichiometric films. The vapor pressure model for a ternary system is validated using known vapor pressure for monatomic and binary test systems. With a valid ternary system vapor pressure model, results show there is a kinetic barrier to decomposition for ZnGeAs2.
ContributorsTucker, Jon R (Author) / Van Schilfgaarde, Mark (Thesis advisor) / Newman, Nathan (Committee member) / Adams, James (Committee member) / Arizona State University (Publisher)
Created2011
150722-Thumbnail Image.png
Description
In 2022, integrated circuit interconnects will approach 10 nm and the diffusion barrier layers needed to ensure long lasting devices will be at 1 nm. This dimension means the interconnect will be dominated by the interface and it has been shown the interface is currently eroding device performance. The standard

In 2022, integrated circuit interconnects will approach 10 nm and the diffusion barrier layers needed to ensure long lasting devices will be at 1 nm. This dimension means the interconnect will be dominated by the interface and it has been shown the interface is currently eroding device performance. The standard interconnect system has three layers - a Copper metal core, a Tantalum Adhesion layer and a Tantalum Nitride Diffusion Barrier Layer. An alternate interconnect schema is a Tantalum Nitride barrier layer and Silver as a metal. The adhesion layer is removed from the system along with changing to an alternate, low resistivity metal. First principles are used to assess the interface of the Silver and Tantalum Nitride. Several stoichiometric 1:1 Tantalum Nitride polymorphs are assessed and it is found that the Fe2P crystal structure is actually the most stable crystal structure which is at odds with the published phase diagram for ambient crystal structure. The surface stability of Fe2P-TaN is assessed and the absorption enthalpy of Silver adatoms is calculated. Finally, the thermodynamic stability of the TaN-Ag interconnect system is assessed.
ContributorsGrumski, Michael (Author) / Adams, James (Thesis advisor) / Krause, Stephen (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2012
155413-Thumbnail Image.png
Description
Research and development of organic materials and devices for electronic applications has become an increasingly active area. Display and solid-state lighting are the most mature applications and, and products have been commercially available for several years as of this writing. Significant efforts also focus on materials for organic photovoltaic applications.

Research and development of organic materials and devices for electronic applications has become an increasingly active area. Display and solid-state lighting are the most mature applications and, and products have been commercially available for several years as of this writing. Significant efforts also focus on materials for organic photovoltaic applications. Some of the newest work is in devices for medical, sensor and prosthetic applications.

Worldwide energy demand is increasing as the population grows and the standard of living in developing countries improves. Some studies estimate as much as 20% of annual energy usage is consumed by lighting. Improvements are being made in lightweight, flexible, rugged panels that use organic light emitting diodes (OLEDs), which are particularly useful in developing regions with limited energy availability and harsh environments.

Displays also benefit from more efficient materials as well as the lighter weight and ruggedness enabled by flexible substrates. Displays may require different emission characteristics compared with solid-state lighting. Some display technologies use a white OLED (WOLED) backlight with a color filter, but these are more complex and less efficient than displays that use separate emissive materials that produce the saturated colors needed to reproduce the entire color gamut. Saturated colors require narrow-band emitters. Full-color OLED displays up to and including television size are now commercially available from several suppliers, but research continues to develop more efficient and more stable materials.

This research program investigates several topics relevant to solid-state lighting and display applications. One project is development of a device structure to optimize performance of a new stable Pt-based red emitter developed in Prof Jian Li's group. Another project investigates new Pt-based red, green and blue emitters for lighting applications and compares a red/blue structure with a red/green/blue structure to produce light with high color rendering index. Another part of this work describes the fabrication of a 14.7" diagonal full color active-matrix OLED display on plastic substrate. The backplanes were designed and fabricated in the ASU Flexible Display Center and required significant engineering to develop; a discussion of that process is also included.
ContributorsO'Brien, Barry Patrick (Author) / Li, Jian (Thesis advisor) / Adams, James (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2017
168283-Thumbnail Image.png
Description
Over the past three decades, significant progress in the development of organic light-emitting diodes (OLEDs) has been achieved, enabling OLEDs to become a main component in state-of-the-art displays and next generation solid-state lighting. As this technology advances, it is highly desirable to further improve the device efficiency and operational stability

Over the past three decades, significant progress in the development of organic light-emitting diodes (OLEDs) has been achieved, enabling OLEDs to become a main component in state-of-the-art displays and next generation solid-state lighting. As this technology advances, it is highly desirable to further improve the device efficiency and operational stability to drive the success of OLEDs in future display and lighting applications. This dissertation aims at developing novel organic emitting materials covering visible and near-infrared (NIR) emissions for efficient and table OLEDs. Firstly, a series of tetradentate Pd(II) complexes, which have attractive phosphorescent aggregate emission performance especially at high brightness level in device settings, have been developed. The luminescent lifetime of Pd(II) complex aggregates was demonstrated to be shorter than 1 μs with a close-to-unity photoluminescence quantum yield. Moreover, a systematic study regarding structure-property relationship was conducted on four tetradentate Pd(II) complexes, i.e., Pd3O3, Pd3O8-P, Pd3O8-Py2, and Pd3O8-Py5, featuring aggregate emission. As a result, an extremely efficient and stable OLED device utilizing Pd3O8-Py5 was achieved. It demonstrated a peak external quantum efficiency (EQE) of 37.3% with a reduced efficiency roll-off retaining a high EQE of 32.5% at 10000 cd m-2, and an estimated LT95 lifetime (time to 95% of the initial luminance) of 48246 h at 1000 cd m-2. Secondly, there is an increasing demand for NIR OLEDs with emission spectra beyond 900 nm to expand their applications in biometric authentication, night vision display, and telecommunication, etc. A stable and efficient NIR Pt(II) porphyrin complex named PtTPTNP-F8 was developed, and exhibited an electroluminescent spectrum at 920 nm. By carefully choosing the host materials, an PtTPTNP-F8 based NIR OLED achieved a EQE of 1.9%. Furthermore, an PtTPTNP-F8 OLED fabricated in a stable device structure demonstrated extraordinary operational stability with LT99 of >1000 h at 20 mA cm-2. Lastly, a series of imidazole-based blue Pt(II) complexes were developed and studied. Results indicated that structural modification of ligand molecules effectively tuned the emission spectral wavelength and bandwidth. Two blue complexes, i.e., Pt2O2 P2M and Pt2O2-PPy5-M, emitting at 472 and 476 nm respectively, exhibited narrow-band emission spectra with a full width at half maximum of 16 nm.
ContributorsCao, Linyu (Author) / Li, Jian (Thesis advisor) / Adams, James (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2021