Matching Items (14)
Filtering by

Clear all filters

Description
As the genetic information storage vehicle, deoxyribonucleic acid (DNA) molecules are essential to all known living organisms and many viruses. It is amazing that such a large amount of information about how life develops can be stored in these tiny molecules. Countless scientists, especially some biologists, are trying to decipher

As the genetic information storage vehicle, deoxyribonucleic acid (DNA) molecules are essential to all known living organisms and many viruses. It is amazing that such a large amount of information about how life develops can be stored in these tiny molecules. Countless scientists, especially some biologists, are trying to decipher the genetic information stored in these captivating molecules. Meanwhile, another group of researchers, nanotechnologists in particular, have discovered that the unique and concise structural features of DNA together with its information coding ability can be utilized for nano-construction efforts. This idea culminated in the birth of the field of DNA nanotechnology which is the main topic of this dissertation. The ability of rationally designed DNA strands to self-assemble into arbitrary nanostructures without external direction is the basis of this field. A series of novel design principles for DNA nanotechnology are presented here, from topological DNA nanostructures to complex and curved DNA nanostructures, from pure DNA nanostructures to hybrid RNA/DNA nanostructures. As one of the most important and pioneering fields in controlling the assembly of materials (both DNA and other materials) at the nanoscale, DNA nanotechnology is developing at a dramatic speed and as more and more construction approaches are invented, exciting advances will emerge in ways that we may or may not predict.
ContributorsHan, Dongran (Author) / Yan, Hao (Thesis advisor) / Liu, Yan (Thesis advisor) / Ros, Anexandra (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2012
152470-Thumbnail Image.png
Description
DNA is a unique, highly programmable and addressable biomolecule. Due to its reliable and predictable base recognition behavior, uniform structural properties, and extraordinary stability, DNA molecules are desirable substrates for biological computation and nanotechnology. The field of DNA computation has gained considerable attention due to the possibility of exploiting the

DNA is a unique, highly programmable and addressable biomolecule. Due to its reliable and predictable base recognition behavior, uniform structural properties, and extraordinary stability, DNA molecules are desirable substrates for biological computation and nanotechnology. The field of DNA computation has gained considerable attention due to the possibility of exploiting the massive parallelism that is inherent in natural systems to solve computational problems. This dissertation focuses on building novel types of computational DNA systems based on both DNA reaction networks and DNA nanotechnology. A series of related research projects are presented here. First, a novel, three-input majority logic gate based on DNA strand displacement reactions was constructed. Here, the three inputs in the majority gate have equal priority, and the output will be true if any two of the inputs are true. We subsequently designed and realized a complex, 5-input majority logic gate. By controlling two of the five inputs, the complex gate is capable of realizing every combination of OR and AND gates of the other 3 inputs. Next, we constructed a half adder, which is a basic arithmetic unit, from DNA strand operated XOR and AND gates. The aim of these two projects was to develop novel types of DNA logic gates to enrich the DNA computation toolbox, and to examine plausible ways to implement large scale DNA logic circuits. The third project utilized a two dimensional DNA origami frame shaped structure with a hollow interior where DNA hybridization seeds were selectively positioned to control the assembly of small DNA tile building blocks. The small DNA tiles were directed to fill the hollow interior of the DNA origami frame, guided through sticky end interactions at prescribed positions. This research shed light on the fundamental behavior of DNA based self-assembling systems, and provided the information necessary to build programmed nanodisplays based on the self-assembly of DNA.
ContributorsLi, Wei (Author) / Yan, Hao (Thesis advisor) / Liu, Yan (Thesis advisor) / Chen, Julian (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2014
152821-Thumbnail Image.png
Description
Colloidal quantum dots (QDs) or semiconductor nanocrystals are often used to describe 2 to 20 nm solution processed nanoparticles of various semiconductor materials that display quantum confinement effects. Compared to traditional fluorescent organic dyes, QDs provide many advantages. For biological applications it is necessary to develop reliable methods to functionalize

Colloidal quantum dots (QDs) or semiconductor nanocrystals are often used to describe 2 to 20 nm solution processed nanoparticles of various semiconductor materials that display quantum confinement effects. Compared to traditional fluorescent organic dyes, QDs provide many advantages. For biological applications it is necessary to develop reliable methods to functionalize QDs with hydrophilic biomolecules so that they may maintain their stability and functionality in physiological conditions. DNA, a molecule that encodes genetic information, is arguably the smartest molecule that nature has ever produced and one of the most explored bio-macromolecules. DNA directed self-assembly can potentially organize QDs that are functionalized with DNA with nanometer precision, and the resulting arrangements may facilitate the display of novel optical properties. The goal of this dissertation was to achieve a robust reliable yet simple strategy to link DNA to QDs so that they can be used for DNA directed self assembly by which we can engineer their optical properties. Presented here is a series of studies to achieve this goal. First we demonstrate the aqueous synthesis of colloidal nanocrystal heterostructures consisting of the CdTe core encapsulated by CdS/ZnS or CdSe/ZnS shells using glutathione (GSH), a tripeptide, as the capping ligand. We next employed this shell synthesis strategy to conjugate PS-PO chimeric DNA to QDs at the time of shell synthesis. We synthesized a library of DNA linked QDs emitting from UV to near IR that are very stable in high salt concentrations. These DNA functionalized QDs were further site-specifically organized on DNA origami in desired patterns directed by DNA self-assembly. We further extended our capability to functionalize DNA to real IR emitting CdxPb1-xTe alloyed QDs, and demonstrated their stability by self-assembling them on DNA origami. The photo-physical properties of the QDs were further engineered by attaching a QD and a gold nanoparticle in controlled distances on the same DNA origami, which revealed a much longer range quenching effect than usual Forster Resonance Energy Transfer. We are currently engaged in enhancing photoluminescence intensity of the QDs by bringing them in the plasmonic hot spots generated by cluster of larger plasmonic nanoparticles.
ContributorsSamanta, Anirban (Author) / Yan, Hao (Thesis advisor) / Liu, Yan (Thesis advisor) / Buttry, Daniel (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2014
152699-Thumbnail Image.png
Description
DNA nanotechnology is one of the most flourishing interdisciplinary research fields. Through the features of programmability and predictability, DNA nanostructures can be designed to self-assemble into a variety of periodic or aperiodic patterns of different shapes and length scales, and more importantly, they can be used as scaffolds for organizing

DNA nanotechnology is one of the most flourishing interdisciplinary research fields. Through the features of programmability and predictability, DNA nanostructures can be designed to self-assemble into a variety of periodic or aperiodic patterns of different shapes and length scales, and more importantly, they can be used as scaffolds for organizing other nanoparticles, proteins and chemical groups. By leveraging these molecules, DNA nanostructures can be used to direct the organization of complex bio-inspired materials that may serve as smart drug delivery systems and in vitro or in vivo bio-molecular computing and diagnostic devices. In this dissertation I describe a systematic study of the thermodynamic properties of complex DNA nanostructures, including 2D and 3D DNA origami, in order to understand their assembly, stability and functionality and inform future design endeavors. It is conceivable that a more thorough understanding of DNA self-assembly can be used to guide the structural design process and optimize the conditions for assembly, manipulation, and functionalization, thus benefiting both upstream design and downstream applications. As a biocompatible nanoscale motif, the successful integration, stabilization and separation of DNA nanostructures from cells/cell lysate suggests its potential to serve as a diagnostic platform at the cellular level. Here, DNA origami was used to capture and identify multiple T cell receptor mRNA species from single cells within a mixed cell population. This demonstrates the potential of DNA nanostructure as an ideal nano scale tool for biological applications.
ContributorsWei, Xixi (Author) / Liu, Yan (Thesis advisor) / Yan, Hao (Thesis advisor) / Chen, Julian (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2014
153019-Thumbnail Image.png
Description
Scientists around the world have been striving to develop artificial light-harvesting antenna model systems for energy and other light-driven biochemical applications. Among the various approaches to achieve this goal, one of the most promising is the assembly of structurally well-defined artificial light-harvesting antennas based on the principles of structural DNA

Scientists around the world have been striving to develop artificial light-harvesting antenna model systems for energy and other light-driven biochemical applications. Among the various approaches to achieve this goal, one of the most promising is the assembly of structurally well-defined artificial light-harvesting antennas based on the principles of structural DNA nanotechnology. DNA has recently emerged as an extremely efficient material to organize molecules such as fluorophores and proteins on the nanoscale. It is desirable to develop a hybrid smart material by combining artificial antenna systems based on DNA with natural reaction center components, so that the material can be engineered to convert light energy to chemical energy via formation of a charge-separated state.

Presented here are a series of studies toward this goal. First, self-assembled seven-helix DNA bundles (7HB) with cyclic arrays of three distinct chromophores were developed. The spectral properties and energy transfer mechanisms in the artificial light-harvesting antenna were studied extensively using steady-state and time-resolved methods. Next, engineered cysteine residues in the reaction center of the purple photosynthetic bacterium Rhodobacter sphaeroides were each covalently conjugated to fluorophores in order to explore the spectral requirements for energy transfer between an artificial light harvesting system and the reaction center. Finally, a structurally well-defined and spectrally tunable artificial light-harvesting system was constructed, where multiple organic dyes were conjugated to 3-arm DNA nanostructure. A reaction center protein isolated from the purple photosynthetic bacterium Rhodobacter sphaeroides was linked to one end of the 3-arm junction to serve as the final acceptor, which converts the photonic energy absorbed by the chromophores into chemical energy by charge separation. This type of model system is required to understand how parameters such as geometry, spectral characteristics of the dyes, and conformational flexibility affect energy transfer, and can be used to inform the development of more complex model light-harvesting systems.
ContributorsDutta, Palash Kanti (Author) / Liu, Yan (Thesis advisor) / Yan, Hao (Thesis advisor) / Chen, Julian (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2014
153396-Thumbnail Image.png
Description
Deoxyribonucleic acid (DNA) has emerged as an excellent molecular building block for nanoconstruction in addition to its biological role of preserving genetic information. Its unique features such as predictable conformation and programmable intra- and inter-molecular Watson-Crick base pairing interactions make it a remarkable engineering material. A variety of convenient design

Deoxyribonucleic acid (DNA) has emerged as an excellent molecular building block for nanoconstruction in addition to its biological role of preserving genetic information. Its unique features such as predictable conformation and programmable intra- and inter-molecular Watson-Crick base pairing interactions make it a remarkable engineering material. A variety of convenient design rules and reliable assembly methods have been developed to engineer DNA nanostructures. The ability to create designer DNA architectures with accurate spatial control has allowed researchers to explore novel applications in directed material assembly, structural biology, biocatalysis, DNA

computing, nano-robotics, disease diagnosis, and drug delivery.

This dissertation focuses on developing the structural design rules for "static" DNA nano-architectures with increasing complexity. By using a modular self-assembly method, Archimedean tilings were achieved by association of different DNA motifs with designed arm lengths and inter-tile sticky end interactions. By employing DNA origami method, a new set of design rules was created to allow the scaffolds to travel in arbitrary directions in a designed geometry without local symmetry restrictions. Sophisticated wireframe structures of higher-order complexity were designed and constructed successfully. This dissertation also presents the use of "dynamic" DNA nanotechnology to construct DNA origami nanostructures with programmed reconfigurations.
ContributorsZhang, Fei (Author) / Yan, Hao (Thesis advisor) / Liu, Yan (Thesis advisor) / Gould, Ian (Committee member) / Zhang, Peiming (Committee member) / Arizona State University (Publisher)
Created2015
154016-Thumbnail Image.png
Description
Carbon nanomaterials have caught tremendous attention in the last few decades due to their unique physical and chemical properties. Tremendous effort has been made to develop new synthesis techniques for carbon nanomaterials and investigate their properties for different applications. In this work, carbon nanospheres (CNSs), carbon foams (CF), and single-walled

Carbon nanomaterials have caught tremendous attention in the last few decades due to their unique physical and chemical properties. Tremendous effort has been made to develop new synthesis techniques for carbon nanomaterials and investigate their properties for different applications. In this work, carbon nanospheres (CNSs), carbon foams (CF), and single-walled carbon nanotubes (SWNTs) were studied for various applications, including water treatment, energy storage, actuators, and sensors.

A facile spray pyrolysis synthesis technique was developed to synthesize individual CNSs with specific surface area (SSA) up to 1106 m2/g. The hollow CNSs showed adsorption of up to 300 mg rhodamine B dye per gram carbon, which is more than 15 times higher than that observed for conventional carbon black. They were also evaluated as adsorbents for removal of arsenate and selenate from water and displayed good binding to both species, outperforming commercial activated carbons for arsenate removal in pH > 8. When evaluated as supercapacitor electrode materials, specific capacitances of up to 112 F/g at a current density of 0.1 A/g were observed. When used as Li-ion battery anode materials, the CNSs achieved a discharge capacity of 270 mAh/g at a current density of 372 mA/g (1C), which is 4-fold higher than that of commercial graphite anode.

Carbon foams were synthesized using direct pyrolysis and had SSA up to 2340 m2/g. When used as supercapacitor electrode materials, a specific capacitance up to 280 F/g was achieved at current density of 0.1 A/g and remained as high as 207 F/g, even at a high current density of 10 A/g.

A printed walking robot was made from common plastic films and coatings of SWNTs. The solid-state thermal bimorph actuators were multifunctional energy transducers powered by heat, light, or electricity. The actuators were also investigated for photo/thermal detection. Electrochemical actuators based on MnO2 were also studied for potential underwater applications.

SWNTs were also used to fabricate printable electrodes for trace Cr(VI) detection, which displayed sensitivity up to 500 nA/ppb for Cr(VI). The limit of detection was shown to be as low as 5 ppb. A flow detection system based on CNT/printed electrodes was also demonstrated.
ContributorsWang, Chengwei, Ph.D (Author) / Chan, Candace K. (Thesis advisor) / Tongay, Sefaattin (Committee member) / Wang, Qing Hua (Committee member) / Seo, Dong (Committee member) / Arizona State University (Publisher)
Created2015
134831-Thumbnail Image.png
Description
Graphene is a very strong two-dimensional material with a lot of potential applications in microelectromechanical systems (MEMS). In this research, graphene is being optimized for use in a 5 m x 5 m graphene resonator. To work properly, this graphene resonator must have a uniform strain across all manufactured devices.

Graphene is a very strong two-dimensional material with a lot of potential applications in microelectromechanical systems (MEMS). In this research, graphene is being optimized for use in a 5 m x 5 m graphene resonator. To work properly, this graphene resonator must have a uniform strain across all manufactured devices. To reduce strain induced in graphene sheets grown for use in these resonators, evaporated platinum has been used in this investigation due to its relatively lower surface roughness compared to copper films. The final goal is to have the layer of ultrathin platinum (<=200 nm) deposited on the MEMS graphene resonator and used to grow graphene directly onto the devices to remove the manual transfer step due to its inscalability. After growth, graphene is coated with polymer and the platinum is then etched. This investigation concentrated on the transfer process of graphene onto Si/SiO2 substrate from the platinum films. It was determined that the ideal platinum etchant was aqua regia at a volumetric ratio of 6:3:1 (H2O:HCl:HNO3). This concentration was dilute enough to preserve the polymer and graphene layer, but strong enough to etch within a day. Type and thickness of polymer support layers were also investigated. PMMA at a thickness of 200 nm was ideal because it was easy to remove with acetone and strong enough to support the graphene during the etch process. A reference growth recipe was used in this investigation, but now that the transfer has been demonstrated, growth can be optimized for even thinner films.
ContributorsCayll, David Richard (Author) / Tongay, Sefaattin (Thesis director) / Lee, Hyunglae (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
154921-Thumbnail Image.png
Description
The proposed research mainly focuses on employing tunable materials to achieve dynamic control of radiative heat transfer in both far and near fields for thermal management. Vanadium dioxide (VO2), which undergoes a phase transition from insulator to metal at the temperature of 341 K, is one tunable material being applied.

The proposed research mainly focuses on employing tunable materials to achieve dynamic control of radiative heat transfer in both far and near fields for thermal management. Vanadium dioxide (VO2), which undergoes a phase transition from insulator to metal at the temperature of 341 K, is one tunable material being applied. The other one is graphene, whose optical properties can be tuned by chemical potential through external bias or chemical doping.

In the far field, a VO2-based metamaterial thermal emitter with switchable emittance in the mid-infrared has been theoretically studied. When VO2 is in the insulating phase, high emittance is observed at the resonance frequency of magnetic polaritons (MPs), while the structure becomes highly reflective when VO2 turns metallic. A VO2-based thermal emitter with tunable emittance is also demonstrated due to the excitation of MP at different resonance frequencies when VO2 changes phase. Moreover, an infrared thermal emitter made of graphene-covered SiC grating could achieve frequency-tunable emittance peak via the change of the graphene chemical potential.

In the near field, a radiation-based thermal rectifier is constructed by investigating radiative transfer between VO2 and SiO2 separated by nanometer vacuum gap distances. Compared to the case where VO2 is set as the emitter at 400 K as a metal, when VO2 is considered as the receiver at 300 K as an insulator, the energy transfer is greatly enhanced due to the strong surface phonon polariton (SPhP) coupling between insulating VO2 and SiO2. A radiation-based thermal switch is also explored by setting VO2 as both the emitter and the receiver. When both VO2 emitter and receiver are at the insulating phase, the switch is at the “on” mode with a much enhanced heat flux due to strong SPhP coupling, while the near-field radiative transfer is greatly suppressed when the emitting VO2 becomes metallic at temperatures higher than 341K during the “off” mode. In addition, an electrically-gated thermal modulator made of graphene covered SiC plates is theoretically studied with modulated radiative transport by varying graphene chemical potential. Moreover, the MP effect on near-field radiative transport has been investigated by spectrally enhancing radiative heat transfer between two metal gratings.
ContributorsYang, Yue (Author) / Wang, Liping (Thesis advisor) / Phelan, Patrick (Committee member) / Wang, Robert (Committee member) / Tongay, Sefaattin (Committee member) / Rykaczewski, Konrad (Committee member) / Arizona State University (Publisher)
Created2016
155770-Thumbnail Image.png
Description
Nanomaterials exhibit unique properties that are substantially different from their bulk counterparts. These unique properties have gained recognition and application for various fields and products including sensors, displays, photovoltaics, and energy storage devices. Aerosol Deposition (AD) is a relatively new method for depositing nanomaterials. AD utilizes a nozzle to accelerate

Nanomaterials exhibit unique properties that are substantially different from their bulk counterparts. These unique properties have gained recognition and application for various fields and products including sensors, displays, photovoltaics, and energy storage devices. Aerosol Deposition (AD) is a relatively new method for depositing nanomaterials. AD utilizes a nozzle to accelerate the nanomaterial into a deposition chamber under near-vacuum conditions towards a substrate with which the nanomaterial collides and adheres. Traditional methods for designing nozzles at atmospheric conditions are not well suited for nozzle design for AD methods.

Computational Fluid Dynamics (CFD) software, ANSYS Fluent, is utilized to simulate two-phase flows consisting of a carrier gas (Helium) and silicon nanoparticles. The Cunningham Correction Factor is used to account for non-continuous effects at the relatively low pressures utilized in AD.

The nozzle, referred to herein as a boundary layer compensation (BLC) nozzle, comprises an area-ratio which is larger than traditionally designed nozzles to compensate for the thick boundary layer which forms within the viscosity-affected carrier gas flow. As a result, nanoparticles impact the substrate at velocities up to 300 times faster than the baseline nozzle.
ContributorsHoffman, Trent (Author) / Holman, Zachary C (Thesis advisor) / Herrmann, Marcus (Committee member) / Kozicki, Michael (Committee member) / Arizona State University (Publisher)
Created2017