Matching Items (44)
Filtering by

Clear all filters

150382-Thumbnail Image.png
Description
This thesis proposed a novel approach to establish the trust model in a social network scenario based on users' emails. Email is one of the most important social connections nowadays. By analyzing email exchange activities among users, a social network trust model can be established to judge the trust rate

This thesis proposed a novel approach to establish the trust model in a social network scenario based on users' emails. Email is one of the most important social connections nowadays. By analyzing email exchange activities among users, a social network trust model can be established to judge the trust rate between each two users. The whole trust checking process is divided into two steps: local checking and remote checking. Local checking directly contacts the email server to calculate the trust rate based on user's own email communication history. Remote checking is a distributed computing process to get help from user's social network friends and built the trust rate together. The email-based trust model is built upon a cloud computing framework called MobiCloud. Inside MobiCloud, each user occupies a virtual machine which can directly communicate with others. Based on this feature, the distributed trust model is implemented as a combination of local analysis and remote analysis in the cloud. Experiment results show that the trust evaluation model can give accurate trust rate even in a small scale social network which does not have lots of social connections. With this trust model, the security in both social network services and email communication could be improved.
ContributorsZhong, Yunji (Author) / Huang, Dijiang (Thesis advisor) / Dasgupta, Partha (Committee member) / Syrotiuk, Violet (Committee member) / Arizona State University (Publisher)
Created2011
151780-Thumbnail Image.png
Description
Objective of this thesis project is to build a prototype using Linear Temporal Logic specifications for generating a 2D motion plan commanding an iRobot to fulfill the specifications. This thesis project was created for Cyber Physical Systems Lab in Arizona State University. The end product of this thesis is creation

Objective of this thesis project is to build a prototype using Linear Temporal Logic specifications for generating a 2D motion plan commanding an iRobot to fulfill the specifications. This thesis project was created for Cyber Physical Systems Lab in Arizona State University. The end product of this thesis is creation of a software solution which can be used in the academia and industry for research in cyber physical systems related applications. The major features of the project are: creating a modular system for motion planning, use of Robot Operating System (ROS), use of triangulation for environment decomposition and using stargazer sensor for localization. The project is built on an open source software called ROS which provides an environment where it is very easy to integrate different modules be it software or hardware on a Linux based platform. Use of ROS implies the project or its modules can be adapted quickly for different applications as the need arises. The final software package created and tested takes a data file as its input which contains the LTL specifications, a symbols list used in the LTL and finally the environment polygon data containing real world coordinates for all polygons and also information on neighbors and parents of each polygon. The software package successfully ran the experiment of coverage, reachability with avoidance and sequencing.
ContributorsPandya, Parth (Author) / Fainekos, Georgios (Thesis advisor) / Dasgupta, Partha (Committee member) / Lee, Yann-Hang (Committee member) / Arizona State University (Publisher)
Created2013
151851-Thumbnail Image.png
Description
In this thesis we deal with the problem of temporal logic robustness estimation. We present a dynamic programming algorithm for the robust estimation problem of Metric Temporal Logic (MTL) formulas regarding a finite trace of time stated sequence. This algorithm not only tests if the MTL specification is satisfied by

In this thesis we deal with the problem of temporal logic robustness estimation. We present a dynamic programming algorithm for the robust estimation problem of Metric Temporal Logic (MTL) formulas regarding a finite trace of time stated sequence. This algorithm not only tests if the MTL specification is satisfied by the given input which is a finite system trajectory, but also quantifies to what extend does the sequence satisfies or violates the MTL specification. The implementation of the algorithm is the DP-TALIRO toolbox for MATLAB. Currently it is used as the temporal logic robust computing engine of S-TALIRO which is a tool for MATLAB searching for trajectories of minimal robustness in Simulink/ Stateflow. DP-TALIRO is expected to have near linear running time and constant memory requirement depending on the structure of the MTL formula. DP-TALIRO toolbox also integrates new features not supported in its ancestor FW-TALIRO such as parameter replacement, most related iteration and most related predicate. A derivative of DP-TALIRO which is DP-T-TALIRO is also addressed in this thesis which applies dynamic programming algorithm for time robustness computation. We test the running time of DP-TALIRO and compare it with FW-TALIRO. Finally, we present an application where DP-TALIRO is used as the robustness computation core of S-TALIRO for a parameter estimation problem.
ContributorsYang, Hengyi (Author) / Fainekos, Georgios (Thesis advisor) / Sarjoughian, Hessam S. (Committee member) / Shrivastava, Aviral (Committee member) / Arizona State University (Publisher)
Created2013
151519-Thumbnail Image.png
Description
Majority of the Sensor networks consist of low-cost autonomously powered devices, and are used to collect data in physical world. Today's sensor network deployments are mostly application specific & owned by a particular entity. Because of this application specific nature & the ownership boundaries, this modus operandi hinders large scale

Majority of the Sensor networks consist of low-cost autonomously powered devices, and are used to collect data in physical world. Today's sensor network deployments are mostly application specific & owned by a particular entity. Because of this application specific nature & the ownership boundaries, this modus operandi hinders large scale sensing & overall network operational capacity. The main goal of this research work is to create a mechanism to dynamically form personal area networks based on mote class devices spanning ownership boundaries. When coupled with an overlay based control system, this architecture can be conveniently used by a remote client to dynamically create sensor networks (personal area network based) even when the client does not own a network. The nodes here are "borrowed" from existing host networks & the application related to the newly formed network will co-exist with the native applications thanks to concurrency. The result allows users to embed a single collection tree onto spatially distant networks as if they were within communication range. This implementation consists of core operating system & various other external components that support injection maintenance & dissolution sensor network applications at client's request. A large object data dissemination protocol was designed for reliable application injection. The ability of this system to remotely reconfigure a network is useful given the high failure rate of real-world sensor network deployments. Collaborative sensing, various physical phenomenon monitoring also be considered as applications of this architecture.
ContributorsFernando, M. S. R (Author) / Dasgupta, Partha (Thesis advisor) / Bhattacharya, Amiya (Thesis advisor) / Gupta, Sandeep (Committee member) / Arizona State University (Publisher)
Created2013
151524-Thumbnail Image.png
Description
Process migration is a heavily studied research area and has a number of applications in distributed systems. Process migration means transferring a process running on one machine to another such that it resumes execution from the point at which it was suspended. The conventional approach to implement process migration is

Process migration is a heavily studied research area and has a number of applications in distributed systems. Process migration means transferring a process running on one machine to another such that it resumes execution from the point at which it was suspended. The conventional approach to implement process migration is to move the entire state information of the process (including hardware context, virtual memory, files etc.) from one machine to another. Copying all the state information is costly. This thesis proposes and demonstrates a new approach of migrating a process between two cores of Intel Single Chip Cloud (SCC), an experimental 48-core processor by Intel, with each core running a separate instance of the operating system. In this method the amount of process state to be transferred from one core's memory to another is reduced by making use of special registers called Lookup tables (LUTs) present on each core of SCC. Thus this new approach is faster than the conventional method.
ContributorsJain, Vaibhav (Author) / Dasgupta, Partha (Thesis advisor) / Shriavstava, Aviral (Committee member) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2013
151527-Thumbnail Image.png
Description
Rapid technology scaling, the main driver of the power and performance improvements of computing solutions, has also rendered our computing systems extremely susceptible to transient errors called soft errors. Among the arsenal of techniques to protect computation from soft errors, Control Flow Checking (CFC) based techniques have gained a reputation

Rapid technology scaling, the main driver of the power and performance improvements of computing solutions, has also rendered our computing systems extremely susceptible to transient errors called soft errors. Among the arsenal of techniques to protect computation from soft errors, Control Flow Checking (CFC) based techniques have gained a reputation of effective, yet low-cost protection mechanism. The basic idea is that, there is a high probability that a soft-fault in program execution will eventually alter the control flow of the program. Therefore just by making sure that the control flow of the program is correct, significant protection can be achieved. More than a dozen techniques for CFC have been developed over the last several decades, ranging from hardware techniques, software techniques, and hardware-software hybrid techniques as well. Our analysis shows that existing CFC techniques are not only ineffective in protecting from soft errors, but cause additional power and performance overheads. For this analysis, we develop and validate a simulation based experimental setup to accurately and quantitatively estimate the architectural vulnerability of a program execution on a processor micro-architecture. We model the protection achieved by various state-of-the-art CFC techniques in this quantitative vulnerability estimation setup, and find out that software only CFC protection schemes (CFCSS, CFCSS+NA, CEDA) increase system vulnerability by 18% to 21% with 17% to 38% performance overhead. Hybrid CFC protection (CFEDC) increases vulnerability by 5%, while the vulnerability remains almost the same for hardware only CFC protection (CFCET); notwithstanding the hardware overheads of design cost, area, and power incurred in the hardware modifications required for their implementations.
ContributorsRhisheekesan, Abhishek (Author) / Shrivastava, Aviral (Thesis advisor) / Colbourn, Charles Joseph (Committee member) / Wu, Carole-Jean (Committee member) / Arizona State University (Publisher)
Created2013
152385-Thumbnail Image.png
Description
This thesis addresses the ever increasing threat of botnets in the smartphone domain and focuses on the Android platform and the botnets using Online Social Networks (OSNs) as Command and Control (C&C;) medium. With any botnet, C&C; is one of the components on which the survival of botnet depends. Individual

This thesis addresses the ever increasing threat of botnets in the smartphone domain and focuses on the Android platform and the botnets using Online Social Networks (OSNs) as Command and Control (C&C;) medium. With any botnet, C&C; is one of the components on which the survival of botnet depends. Individual bots use the C&C; channel to receive commands and send the data. This thesis develops active host based approach for identifying the presence of bot based on the anomalies in the usage patterns of the user before and after the bot is installed on the user smartphone and alerting the user to the presence of the bot. A profile is constructed for each user based on the regular web usage patterns (achieved by intercepting the http(s) traffic) and implementing machine learning techniques to continuously learn the user's behavior and changes in the behavior and all the while looking for any anomalies in the user behavior above a threshold which will cause the user to be notified of the anomalous traffic. A prototype bot which uses OSN s as C&C; channel is constructed and used for testing. Users are given smartphones(Nexus 4 and Galaxy Nexus) running Application proxy which intercepts http(s) traffic and relay it to a server which uses the traffic and constructs the model for a particular user and look for any signs of anomalies. This approach lays the groundwork for the future host-based counter measures for smartphone botnets using OSN s as C&C; channel.
ContributorsKilari, Vishnu Teja (Author) / Xue, Guoliang (Thesis advisor) / Ahn, Gail-Joon (Committee member) / Dasgupta, Partha (Committee member) / Arizona State University (Publisher)
Created2013
150460-Thumbnail Image.png
Description
Performance improvements have largely followed Moore's Law due to the help from technology scaling. In order to continue improving performance, power-efficiency must be reduced. Better technology has improved power-efficiency, but this has a limit. Multi-core architectures have been shown to be an additional aid to this crusade of increased power-efficiency.

Performance improvements have largely followed Moore's Law due to the help from technology scaling. In order to continue improving performance, power-efficiency must be reduced. Better technology has improved power-efficiency, but this has a limit. Multi-core architectures have been shown to be an additional aid to this crusade of increased power-efficiency. Accelerators are growing in popularity as the next means of achieving power-efficient performance. Accelerators such as Intel SSE are ideal, but prove difficult to program. FPGAs, on the other hand, are less efficient due to their fine-grained reconfigurability. A middle ground is found in CGRAs, which are highly power-efficient, but largely programmable accelerators. Power-efficiencies of 100s of GOPs/W have been estimated, more than 2 orders of magnitude greater than current processors. Currently, CGRAs are limited in their applicability due to their ability to only accelerate a single thread at a time. This limitation becomes especially apparent as multi-core/multi-threaded processors have moved into the mainstream. This limitation is removed by enabling multi-threading on CGRAs through a software-oriented approach. The key capability in this solution is enabling quick run-time transformation of schedules to execute on targeted portions of the CGRA. This allows the CGRA to be shared among multiple threads simultaneously. Analysis shows that enabling multi-threading has very small costs but provides very large benefits (less than 1% single-threaded performance loss but nearly 300% CGRA throughput increase). By increasing dynamism of CGRA scheduling, system performance is shown to increase overall system performance of an optimized system by almost 350% over that of a single-threaded CGRA and nearly 20x faster than the same system with no CGRA in a highly threaded environment.
ContributorsPager, Jared (Author) / Shrivastava, Aviral (Thesis advisor) / Gupta, Sandeep (Committee member) / Speyer, Gil (Committee member) / Arizona State University (Publisher)
Created2011
150544-Thumbnail Image.png
Description
Limited Local Memory (LLM) multicore architectures are promising powerefficient architectures will scalable memory hierarchy. In LLM multicores, each core can access only a small local memory. Accesses to a large shared global memory can only be made explicitly through Direct Memory Access (DMA) operations. Standard Template Library (STL) is a

Limited Local Memory (LLM) multicore architectures are promising powerefficient architectures will scalable memory hierarchy. In LLM multicores, each core can access only a small local memory. Accesses to a large shared global memory can only be made explicitly through Direct Memory Access (DMA) operations. Standard Template Library (STL) is a powerful programming tool and is widely used for software development. STLs provide dynamic data structures, algorithms, and iterators for vector, deque (double-ended queue), list, map (red-black tree), etc. Since the size of the local memory is limited in the cores of the LLM architecture, and data transfer is not automatically supported by hardware cache or OS, the usage of current STL implementation on LLM multicores is limited. Specifically, there is a hard limitation on the amount of data they can handle. In this article, we propose and implement a framework which manages the STL container classes on the local memory of LLM multicore architecture. Our proposal removes the data size limitation of the STL, and therefore improves the programmability on LLM multicore architectures with little change to the original program. Our implementation results in only about 12%-17% increase in static library code size and reasonable runtime overheads.
ContributorsLu, Di (Author) / Shrivastava, Aviral (Thesis advisor) / Chatha, Karamvir (Committee member) / Dasgupta, Partha (Committee member) / Arizona State University (Publisher)
Created2012
150486-Thumbnail Image.png
Description
The use of energy-harvesting in a wireless sensor network (WSN) is essential for situations where it is either difficult or not cost effective to access the network's nodes to replace the batteries. In this paper, the problems involved in controlling an active sensor network that is powered both by batteries

The use of energy-harvesting in a wireless sensor network (WSN) is essential for situations where it is either difficult or not cost effective to access the network's nodes to replace the batteries. In this paper, the problems involved in controlling an active sensor network that is powered both by batteries and solar energy are investigated. The objective is to develop control strategies to maximize the quality of coverage (QoC), which is defined as the minimum number of targets that must be covered and reported over a 24 hour period. Assuming a time varying solar profile, the problem is to optimally control the sensing range of each sensor so as to maximize the QoC while maintaining connectivity throughout the network. Implicit in the solution is the dynamic allocation of solar energy during the day to sensing and to recharging the battery so that a minimum coverage is guaranteed even during the night, when only the batteries can supply energy to the sensors. This problem turns out to be a non-linear optimal control problem of high complexity. Based on novel and useful observations, a method is presented to solve it as a series of quasiconvex (unimodal) optimization problems which not only ensures a maximum QoC, but also maintains connectivity throughout the network. The runtime of the proposed solution is 60X less than a naive but optimal method which is based on dynamic programming, while the peak error of the solution is less than 8%. Unlike the dynamic programming method, the proposed method is scalable to large networks consisting of hundreds of sensors and targets. The solution method enables a designer to explore the optimal configuration of network design. This paper offers many insights in the design of energy-harvesting networks, which result in minimum network setup cost through determination of optimal configuration of number of sensors, sensing beam width, and the sampling time.
ContributorsGaudette, Benjamin (Author) / Vrudhula, Sarma (Thesis advisor) / Shrivastava, Aviral (Committee member) / Sen, Arunabha (Committee member) / Arizona State University (Publisher)
Created2012