Matching Items (49)
Filtering by

Clear all filters

148169-Thumbnail Image.png
Description

This thesis was conducted to study and analyze the fund allocation process adopted by different states in the United States to reduce the impact of the Covid-19 virus. Seven different states and their funding methodologies were compared against the case count within the state. The study also focused on development

This thesis was conducted to study and analyze the fund allocation process adopted by different states in the United States to reduce the impact of the Covid-19 virus. Seven different states and their funding methodologies were compared against the case count within the state. The study also focused on development of a physical distancing index based on three significant attributes. This index was then compared to the expenditure and case counts to support decision making.
A regression model was developed to analyze and compare how different states case counts played out against the regression model and the risk index.

ContributorsJaisinghani, Shaurya (Author) / Mirchandani, Pitu (Thesis director) / Clough, Michael (Committee member) / McCarville, Daniel R. (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor) / Department of Information Systems (Contributor) / Industrial, Systems & Operations Engineering Prgm (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148238-Thumbnail Image.png
Description

Dreadnought is a free-to-play multiplayer flight simulation in which two teams of 8 players each compete against one another to complete an objective. Each player controls a large-scale spaceship, various aspects of which can be customized to improve a player’s performance in a game. One such aspect is Officer Briefings,

Dreadnought is a free-to-play multiplayer flight simulation in which two teams of 8 players each compete against one another to complete an objective. Each player controls a large-scale spaceship, various aspects of which can be customized to improve a player’s performance in a game. One such aspect is Officer Briefings, which are passive abilities that grant ships additional capabilities. Two of these Briefings, known as Retaliator and Get My Good Side, have strong synergy when used together, which has led to the Dreadnought community’s claiming that the Briefings are too powerful and should be rebalanced to be more in line with the power levels of other Briefings. This study collected gameplay data with and without the use of these specific Officer Briefings to determine the precise impact on gameplay. Linear correlation matrices and inference on two means were used to determine performance impact. It was found that, although these Officer Briefings do improve an individual player’s performance in a game, they do not have a consistent impact on the player’s team performance, and that these Officer Briefings are therefore not in need of rebalancing.

ContributorsJacobs, Max I. (Author) / Schneider, Laurence (Thesis director) / Tran, Samantha (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
136550-Thumbnail Image.png
Description
The NFL is one of largest and most influential industries in the world. In America there are few companies that have a stronger hold on the American culture and create such a phenomena from year to year. In this project aimed to develop a strategy that helps an NFL team

The NFL is one of largest and most influential industries in the world. In America there are few companies that have a stronger hold on the American culture and create such a phenomena from year to year. In this project aimed to develop a strategy that helps an NFL team be as successful as possible by defining which positions are most important to a team's success. Data from fifteen years of NFL games was collected and information on every player in the league was analyzed. First there needed to be a benchmark which describes a team as being average and then every player in the NFL must be compared to that average. Based on properties of linear regression using ordinary least squares this project aims to define such a model that shows each position's importance. Finally, once such a model had been established then the focus turned to the NFL draft in which the goal was to find a strategy of where each position needs to be drafted so that it is most likely to give the best payoff based on the results of the regression in part one.
ContributorsBalzer, Kevin Ryan (Author) / Goegan, Brian (Thesis director) / Dassanayake, Maduranga (Committee member) / Barrett, The Honors College (Contributor) / Economics Program in CLAS (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2015-05
135661-Thumbnail Image.png
Description
This paper intends to analyze the Phoenix Suns' shooting patterns in real NBA games, and compare them to the "NBA 2k16" Suns' shooting patterns. Data was collected from the first five Suns' games of the 2015-2016 season and the same games played in "NBA 2k16". The findings of this paper

This paper intends to analyze the Phoenix Suns' shooting patterns in real NBA games, and compare them to the "NBA 2k16" Suns' shooting patterns. Data was collected from the first five Suns' games of the 2015-2016 season and the same games played in "NBA 2k16". The findings of this paper indicate that "NBA 2k16" utilizes statistical findings to model their gameplay. It was also determined that "NBA 2k16" modeled the shooting patterns of the Suns in the first five games of the 2015-2016 season very closely. Both, the real Suns' games and the "NBA 2k16" Suns' games, showed a higher probability of success for shots taken in the first eight seconds of the shot clock than the last eight seconds of the shot clock. Similarly, both game types illustrated a trend that the probability of success for a shot increases as a player holds onto a ball longer. This result was not expected for either game type, however, "NBA 2k16" modeled the findings consistent with real Suns' games. The video game modeled the Suns with significantly more passes per possession than the real Suns' games, while they also showed a trend that more passes per possession has a significant effect on the outcome of the shot. This trend was not present in the real Suns' games, however literature supports this finding. Also, "NBA 2k16" did not correctly model the allocation of team shots for each player, however, the differences were found only in bench players. Lastly, "NBA 2k16" did not correctly allocate shots across the seven regions for Eric Bledsoe, however, there was no evidence indicating that the game did not correctly model the allocation of shots for the other starters, as well as the probability of success across the regions.
ContributorsHarrington, John P. (Author) / Armbruster, Dieter (Thesis director) / Kamarianakis, Ioannis (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135606-Thumbnail Image.png
Description
League of Legends is a Multiplayer Online Battle Arena (MOBA) game. MOBA games are generally formatted where two teams of five, each player controlling a character (champion), will try to take each other's base as quickly as possible. Currently, with about 70 million, League of Legends is number one in

League of Legends is a Multiplayer Online Battle Arena (MOBA) game. MOBA games are generally formatted where two teams of five, each player controlling a character (champion), will try to take each other's base as quickly as possible. Currently, with about 70 million, League of Legends is number one in the digital entertainment industry with $1.63 billion dollars of revenue in year 2015. This research analysis scopes in on the niche of the "Jungler" role between different tiers of player in League of Legends. I uncovered differences in player strategy that may explain the achievement of high rank using data aggregation through Riot Games' API, data slicing with time-sensitive data, random sampling, clustering by tiers, graphical techniques to display the cluster, distribution analysis and finally, a comprehensive factor analysis on the data's implications.
ContributorsPoon, Alex (Author) / Clark, Joseph (Thesis director) / Simon, Alan (Committee member) / Department of Information Systems (Contributor) / Department of Management (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
DescriptionIn this project, we aim to examine the methods used to obtain U.S. mortality rates, as well as the changes in the mortality rate between subgroups of interest within our population due to various diseases.
ContributorsClermont, Nicholas Charles (Author) / Boggess, May (Thesis director) / Kamarianakis, Ioannis (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2014-05
136587-Thumbnail Image.png
Description
In the words of W. Edwards Deming, "the central problem in management and in leadership is failure to understand the information in variation." While many quality management programs propose the institution of technical training in advanced statistical methods, this paper proposes that by understanding the fundamental information behind statistical theory,

In the words of W. Edwards Deming, "the central problem in management and in leadership is failure to understand the information in variation." While many quality management programs propose the institution of technical training in advanced statistical methods, this paper proposes that by understanding the fundamental information behind statistical theory, and by minimizing bias and variance while fully utilizing the available information about the system at hand, one can make valuable, accurate predictions about the future. Combining this knowledge with the work of quality gurus W. E. Deming, Eliyahu Goldratt, and Dean Kashiwagi, a framework for making valuable predictions for continuous improvement is made. After this information is synthesized, it is concluded that the best way to make accurate, informative predictions about the future is to "balance the present and future," seeing the future through the lens of the present and thus minimizing bias, variance, and risk.
ContributorsSynodis, Nicholas Dahn (Author) / Kashiwagi, Dean (Thesis director, Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2015-05
137055-Thumbnail Image.png
Description
This creative project explores the trend of designer/synthetic drug use in Arizona and nationwide. The project serves as "gap research" - bringing to light the problem of limited use statistics and constantly-changing drug chemical compounds. The project was thoroughly researched using media reports, psychology/drug addiction experts, community education organizers and

This creative project explores the trend of designer/synthetic drug use in Arizona and nationwide. The project serves as "gap research" - bringing to light the problem of limited use statistics and constantly-changing drug chemical compounds. The project was thoroughly researched using media reports, psychology/drug addiction experts, community education organizers and available healthcare statistics. The results provided not definitive answer other than that more work needs to be done in the area of synthetic drug use. Parents and youth must educate themselves on the dangers of using these "legal" drugs.
ContributorsFischer, April Lee (Author) / Doig, Stephen (Thesis director) / Olive, Foster (Committee member) / Barrett, The Honors College (Contributor) / Walter Cronkite School of Journalism and Mass Communication (Contributor)
Created2014-05
137620-Thumbnail Image.png
Description
The area of real-time baseball statistics presents several challenges that can be addressed using mobile devices. In order to accurately record real-time statistics, it is necessary to present the user with a concise interface that can be used to quickly record the necessary data during in-game events. In this project,

The area of real-time baseball statistics presents several challenges that can be addressed using mobile devices. In order to accurately record real-time statistics, it is necessary to present the user with a concise interface that can be used to quickly record the necessary data during in-game events. In this project, we use a mobile application to address this by separating out the required input into pre-game and in-game inputs. We also explore the use of a mobile application to leverage crowd sourcing techniques, which address the challenge of accuracy and precision in subjective real-time statistics.
ContributorsVan Egmond, Eric David (Author) / Tadayon-Navabi, Farideh (Thesis director) / Wilkerson, Kelly (Committee member) / Gorla, Mark (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2013-05
137647-Thumbnail Image.png
Description
The widespread use of statistical analysis in sports-particularly Baseball- has made it increasingly necessary for small and mid-market teams to find ways to maintain their analytical advantages over large market clubs. In baseball, an opportunity for exists for teams with limited financial resources to sign players under team control to

The widespread use of statistical analysis in sports-particularly Baseball- has made it increasingly necessary for small and mid-market teams to find ways to maintain their analytical advantages over large market clubs. In baseball, an opportunity for exists for teams with limited financial resources to sign players under team control to long-term contracts before other teams can bid for their services in free agency. If small and mid-market clubs can successfully identify talented players early, clubs can save money, achieve cost certainty and remain competitive for longer periods of time. These deals are also advantageous to players since they receive job security and greater financial dividends earlier in their career. The objective of this paper is to develop a regression-based predictive model that teams can use to forecast the performance of young baseball players with limited Major League experience. There were several tasks conducted to achieve this goal: (1) Data was obtained from Major League Baseball and Lahman's Baseball Database and sorted using Excel macros for easier analysis. (2) Players were separated into three positional groups depending on similar fielding requirements and offensive profiles: Group I was comprised of first and third basemen, Group II contains second basemen, shortstops, and center fielders and Group III contains left and right fielders. (3) Based on the context of baseball and the nature of offensive performance metrics, only players who achieve greater than 200 plate appearances within the first two years of their major league debut are included in this analysis. (4) The statistical software package JMP was used to create regression models of each group and analyze the residuals for any irregularities or normality violations. Once the models were developed, slight adjustments were made to improve the accuracy of the forecasts and identify opportunities for future work. It was discovered that Group I and Group III were the easiest player groupings to forecast while Group II required several attempts to improve the model.
ContributorsJack, Nathan Scott (Author) / Shunk, Dan (Thesis director) / Montgomery, Douglas (Committee member) / Borror, Connie (Committee member) / Industrial, Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2013-05