Matching Items (2)
Filtering by

Clear all filters

134334-Thumbnail Image.png
Description
Coronaviruses are a significant group of viruses that cause enteric and respiratory infections in a variety of animals, including humans. Outbreaks of Severe Acute Respiratory Syndrome (SARS) and Middle Eastern Respiratory Syndrome (MERS) in the past 15 years has increased research into coronaviruses to gain an understanding of their structure

Coronaviruses are a significant group of viruses that cause enteric and respiratory infections in a variety of animals, including humans. Outbreaks of Severe Acute Respiratory Syndrome (SARS) and Middle Eastern Respiratory Syndrome (MERS) in the past 15 years has increased research into coronaviruses to gain an understanding of their structure and function so one day therapies and vaccines may be produced. These viruses have four main structural proteins: the spike, nucleocapsid, envelope, and membrane proteins. The envelope (E) protein is an integral membrane protein in the viral envelope that acts as a viroporin for transport of cations and plays an important role in pathogenesis and viral assembly. E contains a hydrophobic transmembrane domain with polar residues that is conserved across coronavirus species and may be significant to its function. This experiment looks at the possible role of one polar residue in assembly, the 15th residue glutamine, in the Mouse Hepatitis Virus (MHV) E protein. The glutamine 15 residue was mutated into positively charged residues lysine or arginine. Plasmids with these mutations were co-expressed with the membrane protein (M) gene to produce virus-like particles (VLPs). VLPs are produced when E and M are co-expressed together and model assembly of the coronavirus envelope, but they are not infectious as they do not contain the viral genome. Observing their production with the mutated E protein gives insight into the role the glutamine residue plays in assembly. The experiment showed that a changing glutamine 15 to positive charges does not appear to significantly affect the assembly of the VLPs, indicating that this specific residue may not have a large impact on viral assembly.
ContributorsHaller, Sarah S. (Author) / Hogue, Brenda (Thesis director) / Liu, Wei (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor) / Biodesign Institute (Contributor)
Created2017-05
187656-Thumbnail Image.png
Description
Coccidioidomycosis, or valley fever (VF), is a fungal infection caused by Coccidioides that is highly endemic in southern Arizona and central California. The antibody response to infection in combination with clinical presentation and radiographic findings are often used to diagnose disease, as a highly sensitive and specific antigen-based assay has

Coccidioidomycosis, or valley fever (VF), is a fungal infection caused by Coccidioides that is highly endemic in southern Arizona and central California. The antibody response to infection in combination with clinical presentation and radiographic findings are often used to diagnose disease, as a highly sensitive and specific antigen-based assay has yet to be developed and commercialized. In this dissertation, a panel of monoclonal antibodies (mAbs) was generated in an attempt to identify circulating antigen in VF-positive patients. Despite utilizing a mixture of antigens, almost all mAbs obtained were against chitinase 1 (CTS1), a protein previously identified as a main component in serodiagnostic reagents. While CTS1 was undoubtedly a dominant seroreactive antigen, it was not successfully detected in circulation in patient samples prompting a shift toward further understanding the importance of CTS1 in antibody-based diagnostic assays. Interestingly, depletion of this antigen from diagnostic antigen preparations resulted in complete loss of patient IgG reactivity by immunodiffusion. This finding encouraged the development of a rapid, 10-minute point-of-care test in lateral flow assay (LFA) format to exclusively detect anti-CTS1 antibodies from human and non-human animal patients with coccidioidal infection. A CTS1 LFA was developed that demonstrated 92.9% sensitivity and 97.7% specificity when compared to current quantitative serologic assays (complement fixation and immunodiffusion). A commercially available LFA that utilizes a proprietary mixture of antigens was shown to be less sensitive (64.3%) and less specific (79.1%). This result provides evidence that a single antigen can be used to detect antibodies consistently and accurately from patients with VF. The LFA presented here shows promise as a helpful tool to rule-in or rule-out a diagnosis of VF such that patients may avoid unnecessary antibacterial treatments, improving healthcare efficiency.
ContributorsGrill, Francisca J (Author) / Lake, Douglas F (Thesis advisor) / Magee, D Mitch (Committee member) / Grys, Thomas (Committee member) / Chen, Qiang (Committee member) / Arizona State University (Publisher)
Created2023