Matching Items (3)
135568-Thumbnail Image.png
Description
Triops (Branchiopoda: Notostraca) and Streptocephalus (Branchiopoda: Anostraca) are two crustaceans which cohabitate in ephemeral freshwater pools. They both lay desiccation resistant eggs that disperse passively to new hydrologically isolated environments. The extent of genetic distance among regions and populations is of perennial interest in animals that live in such isolated

Triops (Branchiopoda: Notostraca) and Streptocephalus (Branchiopoda: Anostraca) are two crustaceans which cohabitate in ephemeral freshwater pools. They both lay desiccation resistant eggs that disperse passively to new hydrologically isolated environments. The extent of genetic distance among regions and populations is of perennial interest in animals that live in such isolated habitats. Populations in six natural ephemeral pool habitats located in two different regions of the Sonoran Desert and a transition area between the Sonoran and Chihuahuan Deserts were sampled. Sequences from Genbank were used for reference points in the determination of species as well as to further identify regional genetic distance within species. This study estimated the amount of within and between genetic distance of individuals from each region and population through the use of a neutral marker, cytochrome oxidase I (COI). We concluded that, although the method of passive dispersal may differ between the two genera, the differences do not results in different patterns of genetic distances between regions and populations. Furthermore, we only found the putative species, Triops longicaudatus "short", with enough distinct speciation. Although Triops longicaudatus "long" and Triops newberryi may be in the early stages of speciation, this study does not find enough support to conclude that they have separated.
ContributorsMurphy Jr., Patrick Joseph (Author) / Rutowski, Ronald (Thesis director) / Cartwright, Reed (Committee member) / Lessios, Nikos (Committee member) / School of Life Sciences (Contributor) / School of Human Evolution and Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
134043-Thumbnail Image.png
Description
Dire wolves have recently risen to fame as a result of the popular television program Game of Thrones, and thus many viewers know dire wolves as the sigil and loyal companions of the Stark house. Far fewer recognize dire wolves by their scientific name, Canis dirus, or understand the population

Dire wolves have recently risen to fame as a result of the popular television program Game of Thrones, and thus many viewers know dire wolves as the sigil and loyal companions of the Stark house. Far fewer recognize dire wolves by their scientific name, Canis dirus, or understand the population history of this ‘fearsome wolf’ species that roamed the Americas until the megafaunal mass extinction event of the Late Pleistocene. Although numerous studies have examined the species using morphological and geographical methods, thus far their results have been either inconclusive or contradictory. Remaining questions include the relationships dire wolves share with other members of the Canis genus and the internal structure of their populations. Advancements in ancient DNA recovery methods may make it possible to study dire wolf specimens at the molecular level for the first time and may therefore prove useful in clarifying the answers to these questions. Eighteen dire wolf specimens were collected from across the United States and subjected to ancient DNA extraction, library preparation, amplification and purification, bait preparation and capture, and next-generation sequencing. There was an average of 76.9 unique reads and 5.73% coverage when mapped to the Canis familiaris reference genome in ultraconserved regions of the mitochondrial genome. The results indicate that endogenous ancient DNA was not successfully recovered and perhaps ancient DNA recovery methods have not advanced to the point of retrieving informative amounts of DNA from particularly old, thermally degraded specimens. Nevertheless, the ever-changing nature of ancient DNA research makes it vital to continually test the limitations of the field and suggests that ancient DNA recovery methods will prove useful in illuminating dire wolf population history at some point in the future.
ContributorsSkerry, Katherine Marie (Author) / Stone, Anne (Thesis director) / Amdam, Gro (Committee member) / Larson, Greger (Committee member) / School of Human Evolution and Social Change (Contributor) / School of Nutrition and Health Promotion (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134756-Thumbnail Image.png
Description
I argued that the development of the Anterior Inferior Iliac Spine (AIIS), an entirely novel trait unique to the hominin pelvis, signaled a critical transformation from facultative (occasional) to obligate (exclusive) bipedality. The species that were considered included Homo sapiens, Australopithecus afarensis (Lucy), Ardipithecus ramidus (Ardi) and Pan troglodytes (chimpanzee);

I argued that the development of the Anterior Inferior Iliac Spine (AIIS), an entirely novel trait unique to the hominin pelvis, signaled a critical transformation from facultative (occasional) to obligate (exclusive) bipedality. The species that were considered included Homo sapiens, Australopithecus afarensis (Lucy), Ardipithecus ramidus (Ardi) and Pan troglodytes (chimpanzee); Ar. ramidus is believed to have been a facultative biped while both A. afarensis and H. sapiens were/are obligate bipeds, a stark contrast from the upright Bent-Hip Bent-Knee gait seen in chimpanzees, an organism that lacks an AIIS. It was found that the AIIS served a significant function in the advent of bipedality from Pan to Ardi because it allowed higher attachment for the rectus femoris muscle, a crucial knee extensor; however it is not heavily implicated in the transformation from facultative to obligate bipedality. Moreover, the appearance of the AIIS, first seen in Ardi, likely occurred following the lumbosacral changes that positioned the hominin body in an upright position so that the body's center of mass remained balanced over its supporting base. This provided the framework necessary to further select for organisms that had the AIIS and could walk upright, which perpetuated this change in the hominin lineage.
ContributorsGalibov, Michael (Author) / Kimbel, William (Thesis director) / Jacobs, Mark (Committee member) / School of Life Sciences (Contributor) / School of Human Evolution and Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12