Matching Items (16)
Filtering by

Clear all filters

152753-Thumbnail Image.png
Description
Air pollution is a serious problem in most urban areas around the world, which has a number of negative ecological and human health impacts. As a result, it's vitally important to detect and characterize air pollutants to protect the health of the urban environment and our citizens. An important early

Air pollution is a serious problem in most urban areas around the world, which has a number of negative ecological and human health impacts. As a result, it's vitally important to detect and characterize air pollutants to protect the health of the urban environment and our citizens. An important early step in this process is ensuring that the air pollution monitoring network is properly designed to capture the patterns of pollution and that all social demographics in the urban population are represented. An important aspect in characterizing air pollution patterns is scale in space and time which, along with pattern and process relationships, is a key subject in the field of landscape ecology. Thus, using multiple landscape ecological methods, this dissertation research begins by characterizing and quantifying the multi-scalar patterns of ozone (O3) and particulate matter (PM10) in the Phoenix, Arizona, metropolitan region. Results showed that pollution patterns are scale-dependent, O3 is a regionally-scaled pollutant at longer temporal scales, and PM10 is a locally-scaled pollutant with patterns sensitive to season. Next, this dissertation examines the monitoring network within Maricopa County. Using a novel multiscale indicator-based approach, the adequacy of the network was quantified by integrating inputs from various academic and government stakeholders. Furthermore, deficiencies were spatially defined and recommendations were made on how to strengthen the design of the network. A sustainability ranking system also provided new insight into the strengths and weaknesses of the network. Lastly, the study addresses the question of whether distinct social groups were experiencing inequitable exposure to pollutants - a key issue of distributive environmental injustice. A novel interdisciplinary method using multi-scalar ambient pollution data and hierarchical multiple regression models revealed environmental inequities between air pollutants and race, ethnicity, age, and socioeconomic classes. The results indicate that changing the scale of the analysis can change the equitable relationship between pollution and demographics. The scientific findings of the scale-dependent relationships among air pollution patterns, network design, and population demographics, brought to light through this study, can help policymakers make informed decisions for protecting the human health and the urban environment in the Phoenix metropolitan region and beyond.
ContributorsPope, Ronald L (Author) / Wu, Jianguo (Thesis advisor) / Boone, Christopher G. (Committee member) / Brazel, Anthony J. (Committee member) / Forzani, Erica S. (Committee member) / Fraser, Matthew P. (Committee member) / Arizona State University (Publisher)
Created2014
150330-Thumbnail Image.png
Description
Over the past century in the southwestern United States human actions have altered hydrological processes that shape riparian ecosystems. One change, release of treated wastewater into waterways, has created perennial base flows and increased nutrient availability in ephemeral or intermittent channels. While there are benefits to utilizing treated wastewater for

Over the past century in the southwestern United States human actions have altered hydrological processes that shape riparian ecosystems. One change, release of treated wastewater into waterways, has created perennial base flows and increased nutrient availability in ephemeral or intermittent channels. While there are benefits to utilizing treated wastewater for environmental flows, there are numerous unresolved ecohydrological issues regarding the efficacy of effluent to sustain groundwater-dependent riparian ecosystems. This research examined how nutrient-rich effluent, released into waterways with varying depths to groundwater, influences riparian plant community development. Statewide analysis of spatial and temporal patterns of effluent generation and release revealed that hydrogeomorphic setting significantly influences downstream riparian response. Approximately 70% of effluent released is into deep groundwater systems, which produced the lowest riparian development. A greenhouse study assessed how varying concentrations of nitrogen and phosphorus, emulating levels in effluent, influenced plant community response. With increasing nitrogen concentrations, vegetation emerging from riparian seed banks had greater biomass, reduced species richness, and greater abundance of nitrophilic species. The effluent-dominated Santa Cruz River in southern Arizona, with a shallow groundwater upper reach and deep groundwater lower reach, served as a study river while the San Pedro River provided a control. Analysis revealed that woody species richness and composition were similar between the two systems. Hydric pioneers (Populus fremontii, Salix gooddingii) were dominant at perennial sites on both rivers. Nitrophilic species (Conium maculatum, Polygonum lapathifolium) dominated herbaceous plant communities and plant heights were greatest in effluent-dominated reaches. Riparian vegetation declined with increasing downstream distance in the upper Santa Cruz, while patterns in the lower Santa Cruz were confounded by additional downstream agricultural input and a channelized floodplain. There were distinct longitudinal and lateral shifts toward more xeric species with increasing downstream distance and increasing lateral distance from the low-flow channel. Patterns in the upper and lower Santa Cruz reaches indicate that water availability drives riparian vegetation outcomes below treatment facilities. Ultimately, this research informs decision processes and increases adaptive capacity for water resources policy and management through the integration of ecological data in decision frameworks regarding the release of effluent for environmental flows.
ContributorsWhite, Margaret Susan (Author) / Stromberg, Juliet C. (Thesis advisor) / Fisher, Stuart G. (Committee member) / White, Dave (Committee member) / Holway, James (Committee member) / Wu, Jianguo (Committee member) / Arizona State University (Publisher)
Created2011
150052-Thumbnail Image.png
Description
The relationship between biodiversity and ecosystem functioning (BEF) is a central issue in ecology, and a number of recent field experimental studies have greatly improved our understanding of this relationship. Spatial heterogeneity is a ubiquitous characterization of ecosystem processes, and has played a significant role in shaping BEF relationships.

The relationship between biodiversity and ecosystem functioning (BEF) is a central issue in ecology, and a number of recent field experimental studies have greatly improved our understanding of this relationship. Spatial heterogeneity is a ubiquitous characterization of ecosystem processes, and has played a significant role in shaping BEF relationships. The first step towards understanding the effects of spatial heterogeneity on the BEF relationships is to quantify spatial heterogeneity characteristics of key variables of biodiversity and ecosystem functioning, and identify the spatial relationships among these variables. The goal of our research was to address the following research questions based on data collected in 2005 (corresponding to the year when the initial site background information was conducted) and in 2008 (corresponding to the year when removal treatments were conducted) from the Inner Mongolia Grassland Removal Experiment (IMGRE) located in northern China: 1) What are the spatial patterns of soil nutrients, plant biodiversity, and aboveground biomass in a natural grassland community of Inner Mongolia, China? How are they related spatially? and 2) How do removal treatments affect the spatial patterns of soil nutrients, plant biodiversity, and aboveground biomass? Is there any change for their spatial correlations after removal treatments? Our results showed that variables of biodiversity and ecosystem functioning in the natural grassland community would present different spatial patterns, and they would be spatially correlated to each other closely. Removal treatments had a significant effect on spatial structures and spatial correlations of variables, compared to those prior to the removal treatments. The differences in spatial pattern of plant and soil variables and their correlations before and after the biodiversity manipulation may not imply that the results from BEF experiments like IMGRE are invalid. However, they do suggest that the possible effects of spatial heterogeneity on the BEF relationships should be critically evaluated in future studies.
ContributorsYuan, Fei (Author) / Wu, Jianguo (Thesis advisor) / Smith, Andrew T. (Committee member) / Rowe, Helen I (Committee member) / Arizona State University (Publisher)
Created2011
153813-Thumbnail Image.png
Description
A global warming of two degrees Celsius is predicted to drive almost half the world's lizard populations to extinction. Currently, the Phoenix metropolitan region in Arizona, USA, is an average of 3 oC warmer than the surrounding desert. Using a bare lot as a control, I placed copper lizard models

A global warming of two degrees Celsius is predicted to drive almost half the world's lizard populations to extinction. Currently, the Phoenix metropolitan region in Arizona, USA, is an average of 3 oC warmer than the surrounding desert. Using a bare lot as a control, I placed copper lizard models with data loggers in several vegetation and irrigation treatments that represent the dominant backyard landscaping styles in Phoenix (grassy mesic with mist irrigation, drip irrigated xeric, unirrigated native, and a hybrid style known as oasis). Lizard activity time in summer is currently restricted to a few hours in un-irrigated native desert landscaping, while heavily irrigated grass and shade trees allow for continual activity during even the hottest days. Maintaining the existing diversity of landscaping styles (as part of an ongoing mitigation strategy targeted at humans) will be beneficial for lizards.

Fourteen native lizard species inhabit the desert surrounding Phoenix, AZ, USA, but only two species persist within heavily developed areas. This pattern is best explained by a combination of socioeconomic status, land cover, and location. Lizard diversity is highest in affluent areas and lizard abundance is greatest near large patches of open desert. The percentage of building cover has a strong negative impact on both diversity and abundance. Despite Phoenix's intense urban heat island effect, which strongly constrains the potential activity and microhabitat use of lizards in summer, thermal patterns have not yet impacted their distribution and relative abundance at larger scales.
ContributorsAckley, Jeffrey (Author) / Wu, Jianguo (Thesis advisor) / Sullivan, Brian (Thesis advisor) / Myint, Soe (Committee member) / DeNardo, Dale (Committee member) / Angilletta Jr., Michael (Committee member) / Arizona State University (Publisher)
Created2015
156242-Thumbnail Image.png
Description
Habitat fragmentation, the loss of habitat in the landscape and spatial isolation of remaining habitat patches, has long been considered a serious threat to biodiversity. However, the study of habitat fragmentation is fraught with definitional and conceptual challenges. Specifically, a multi-scale perspective is needed to address apparent disagreements between landscape-

Habitat fragmentation, the loss of habitat in the landscape and spatial isolation of remaining habitat patches, has long been considered a serious threat to biodiversity. However, the study of habitat fragmentation is fraught with definitional and conceptual challenges. Specifically, a multi-scale perspective is needed to address apparent disagreements between landscape- and patch-based studies that have caused significant uncertainty concerning fragmentation’s effects on biological communities. Here I tested the hypothesis that habitat fragmentation alters biological communities by creating hierarchically nested selective pressures across plot-, patch-, and landscape-scales using woody plant community datasets from Thousand Island Lake, China. In this archipelago edge-effects had little impact on species-diversity. However, the amount of habitat in the surrounding landscape had a positive effect on species richness at the patch-scale and sets of small islands accumulated species faster than sets of large islands of equal total size at the landscape-scale. In contrast, at the functional-level edge-effects decreased the proportion of shade-tolerant trees, island-effects increased the proportion of shade- intolerant trees, and these two processes interacted to alter the functional composition of the regional pool when the total amount of habitat in the landscape was low. By observing interdependent fragmentation-mediated effects at each scale, I found support for the hypothesis that habitat fragmentation’s effects are hierarchically structured.
ContributorsWilson, Maxwell (Author) / Wu, Jianguo (Thesis advisor) / Smith, Andrew (Committee member) / Hall, Sharon (Committee member) / Jiang, Lin (Committee member) / Cease, Arianne (Committee member) / Arizona State University (Publisher)
Created2018
156639-Thumbnail Image.png
Description
The most advanced social insects, the eusocial insects, form often large societies in which there is reproductive division of labor, queens and workers, have overlapping generations, and cooperative brood care where daughter workers remain in the nest with their queen mother and care for their siblings. The eusocial insects

The most advanced social insects, the eusocial insects, form often large societies in which there is reproductive division of labor, queens and workers, have overlapping generations, and cooperative brood care where daughter workers remain in the nest with their queen mother and care for their siblings. The eusocial insects are composed of representative species of bees and wasps, and all species of ants and termites. Much is known about their organizational structure, but remains to be discovered.

The success of social insects is dependent upon cooperative behavior and adaptive strategies shaped by natural selection that respond to internal or external conditions. The objective of my research was to investigate specific mechanisms that have helped shaped the structure of division of labor observed in social insect colonies, including age polyethism and nutrition, and phenomena known to increase colony survival such as egg cannibalism. I developed various Ordinary Differential Equation (ODE) models in which I applied dynamical, bifurcation, and sensitivity analysis to carefully study and visualize biological outcomes in social organisms to answer questions regarding the conditions under which a colony can survive. First, I investigated how the population and evolutionary dynamics of egg cannibalism and division of labor can promote colony survival. I then introduced a model of social conflict behavior to study the inclusion of different response functions that explore the benefits of cannibalistic behavior and how it contributes to age polyethism, the change in behavior of workers as they age, and its biological relevance. Finally, I introduced a model to investigate the importance of pollen nutritional status in a honeybee colony, how it affects population growth and influences division of labor within the worker caste. My results first reveal that both cannibalism and division of labor are adaptive strategies that increase the size of the worker population, and therefore, the persistence of the colony. I show the importance of food collection, consumption, and processing rates to promote good colony nutrition leading to the coexistence of brood and adult workers. Lastly, I show how taking into account seasonality for pollen collection improves the prediction of long term consequences.
ContributorsRodríguez Messan, Marisabel (Author) / Kang, Yun (Thesis advisor) / Castillo-Chavez, Carlos (Thesis advisor) / Kuang, Yang (Committee member) / Page Jr., Robert E (Committee member) / Gardner, Carl (Committee member) / Arizona State University (Publisher)
Created2018
154580-Thumbnail Image.png
Description
The plateau pika (Ochotona curzoniae), a small burrowing lagomorph that occupies the high alpine grassland ecosystems of the Qinghai-Tibetan Plateau in western China, remains a controversial subject among policymakers and researchers. One line of evidence points to pikas being a pest, which has led to massive attempts to eradicate pika

The plateau pika (Ochotona curzoniae), a small burrowing lagomorph that occupies the high alpine grassland ecosystems of the Qinghai-Tibetan Plateau in western China, remains a controversial subject among policymakers and researchers. One line of evidence points to pikas being a pest, which has led to massive attempts to eradicate pika populations. Another point of view is that pikas are a keystone species and an ecosystem engineer in the grassland ecosystem of the QTP. The pika eradication program raises a difficult ethical and religious dilemma for local pastoralists, and is criticized for not being supported by scientific evidence. Complex interactions between pikas, livestock, and habitat condition are poorly understood. My dissertation research examines underpinning justifications of the pika poisoning program leading to these controversies. I investigated responses of pikas to habitat conditions with field experimental manipulations, and mechanisms of pika population recovery following pika removal. I present policy recommendations based on an environmental ethics framework and findings from the field experiments. After five years of a livestock grazing exclusion experiment and four years of pika monitoring, I found that grazing exclusion resulted in a decline of pika habitat use, which suggests that habitat conditions determine pika population density. I also found that pikas recolonized vacant burrow systems following removal of residents, but that distances travelled by dispersing pikas were extremely short (~50 m). Thus, current pika eradication programs, if allowed to continue, could potentially compromise local populations as well as biodiversity conservation on the QTP. Lethal management of pikas is a narrowly anthropocentric-based form of ecosystem management that has excluded value-pluralism, such as consideration of the intrinsic value of species and the important ecological role played by pikas. These conflicting approaches have led to controversies and policy gridlock. In response, I suggest that the on-going large-scale pika eradication program needs reconsideration. Moderation of stocking rates is required in degraded pika habitats, and Integrated Pest Management may be required when high stocking rate and high pika density coexist. A moderate level of livestock and pika density can be consistent with maintaining the integrity and sustainability of the QTP alpine steppe ecosystem.
ContributorsBadingqiuying (Author) / Smith, Andrew T. (Thesis advisor) / Wu, Jianguo (Committee member) / Minteer, Ben (Committee member) / Anderies, John (Committee member) / Harris, Richard B. (Committee member) / Arizona State University (Publisher)
Created2016
155092-Thumbnail Image.png
Description
In recent decades, marine ecologists have conducted extensive field work and experiments to understand the interactions between bacteria and bacteriophage (phage) in marine environments. This dissertation provides a detailed rigorous framework for gaining deeper insight into these interactions. Specific features of the dissertation include the design of a new deterministic

In recent decades, marine ecologists have conducted extensive field work and experiments to understand the interactions between bacteria and bacteriophage (phage) in marine environments. This dissertation provides a detailed rigorous framework for gaining deeper insight into these interactions. Specific features of the dissertation include the design of a new deterministic Lotka-Volterra model with n + 1 bacteria, n
+ 1 phage, with explicit nutrient, where the jth phage strain infects the first j bacterial strains, a perfectly nested infection network (NIN). This system is subject to trade-off conditions on the life-history traits of both bacteria and phage given in an earlier study Jover et al. (2013). Sufficient conditions are provided to show that a bacteria-phage community of arbitrary size with NIN can arise through the succession of permanent subcommunities, by the successive addition of one new population. Using uniform persistence theory, this entire community is shown to be permanent (uniformly persistent), meaning that all populations ultimately survive.

It is shown that a modified version of the original NIN Lotka-Volterra model with implicit nutrient considered by Jover et al. (2013) is permanent. A new one-to-one infection network (OIN) is also considered where each bacterium is infected by only one phage, and that phage infects only that bacterium. This model does not use the trade-offs on phage infection range, and bacterium resistance to phage. The OIN model is shown to be permanent, and using Lyapunov function theory, coupled with LaSalle’s Invariance Principle, the unique coexistence equilibrium associated with the NIN is globally asymptotically stable provided that the inter- and intra-specific bacterial competition coefficients are equal across all bacteria.

Finally, the OIN model is extended to a “Kill the Winner” (KtW) Lotka-Volterra model

of marine communities consisting of bacteria, phage, and zooplankton. The zooplankton

acts as a super bacteriophage, which infects all bacteria. This model is shown to be permanent.
ContributorsKorytowski, Daniel (Author) / Smith, Hal (Thesis advisor) / Gumel, Abba (Committee member) / Kuang, Yang (Committee member) / Gardner, Carl (Committee member) / Thieme, Horst (Committee member) / Arizona State University (Publisher)
Created2016
155192-Thumbnail Image.png
Description
Context – Urbanization can have negative effects on bat habitat use through the loss and isolation of habitat even for volant bats. Yet, how bats respond to the changing landscape composition and configuration of urban environments remains poorly understood.

Objective – This study examines the relationship between bat habitat

Context – Urbanization can have negative effects on bat habitat use through the loss and isolation of habitat even for volant bats. Yet, how bats respond to the changing landscape composition and configuration of urban environments remains poorly understood.

Objective – This study examines the relationship between bat habitat use and landscape pattern across multiple scales in the Phoenix metropolitan region. My research explores how landscape composition and configuration affects bat activity, foraging activity, and species richness (response variables), and the distinct habitats that they use.

Methods – I used a multi-scale landscape approach and acoustic monitoring data to create predictive models that identified the key predictor variables across multiple scales within the study area. I selected three scales with the intent of capturing the landscape, home range, and site scales, which may all be relevant for understanding bat habitat use.

Results – Overall, class-level metrics and configuration metrics best explained bat habitat use for bat species associated with this urban setting. The extent and extensiveness of water (corresponding to small water bodies and watercourses) were the most important predictor variables across all response variables. Bat activity was predicted to be high in native vegetation remnants, and low in native vegetation at the city periphery. Foraging activity was predicted to be high in fine-scale land cover heterogeneity. Species richness was predicted to be high in golf courses, and low in commercial areas. Bat habitat use was affected by urban landscape pattern mainly at the landscape and site scale.

Conclusions – My results suggested in hot arid urban landscapes water is a limiting factor for bats, even in urban landscapes where the availability of water may be greater than in outlying native desert habitat. Golf courses had the highest species richness, and included the detection of the uncommon pocketed free-tailed bat (Nyctinomops femorosaccus). Water cover types had the second highest species richness. Golf courses may serve as important stop-overs or refuges for rare or elusive bats. Urban waterways and golf courses are novel urban cover types that can serve as compliments to urban preserves, and other green spaces for bat conservation.
ContributorsBazelman, Tracy C (Author) / Wu, Jianguo (Thesis advisor) / Chambers, Carol L. (Thesis advisor) / Smith, Andrew T. (Committee member) / Arizona State University (Publisher)
Created2016
Description
Megafauna species worldwide have undergone dramatic declines since the end of the Pleistocene, twelve thousand years ago. In response, there have been numerous calls to increase conservation attention to these ecologically important species. However, introduced megafauna continue to be treated as pests. This thesis evaluates the extent of this conservation

Megafauna species worldwide have undergone dramatic declines since the end of the Pleistocene, twelve thousand years ago. In response, there have been numerous calls to increase conservation attention to these ecologically important species. However, introduced megafauna continue to be treated as pests. This thesis evaluates the extent of this conservation paradox in relation to changing megafauna diversity from the Pleistocene to the Anthropocene and finds that introductions have provided refuge for a substantial number threatened and endangered megafaunal species and has restored generic diversity levels per continent to levels closer to the Pleistocene than the Holocene. Furthermore, this thesis describes a previously unstudied behavior of wild burros (Equus asinus), an introduced megafauna whose pre-domestic ancestors are Critically Endangered. Wild burros dig wells to access groundwater and in doing so substantially increase water availability on several scales, create sites that are visited by numerous species and are comparable to natural water sources in terms of species richness, and provide germination nurseries for important riparian pioneer plant species. My results suggest that relaxing concepts of nativity in an age of extinction will provide new understandings of ecological function and can help focus attention on broader conservation goals.
ContributorsLundgren, Erick J (Author) / Stromberg, Juliet (Thesis advisor) / Wu, Jianguo (Committee member) / Nieto, Nathan (Committee member) / Arizona State University (Publisher)
Created2017