Matching Items (5)
Filtering by

Clear all filters

152950-Thumbnail Image.png
Description
Organic light emitting diodes (OLEDs) are a promising approach for display and solid state lighting applications. However, further work is needed in establishing the availability of efficient and stable materials for OLEDs with high external quantum efficiency's (EQE) and high operational lifetimes. Recently, significant improvements in the internal quantum efficiency

Organic light emitting diodes (OLEDs) are a promising approach for display and solid state lighting applications. However, further work is needed in establishing the availability of efficient and stable materials for OLEDs with high external quantum efficiency's (EQE) and high operational lifetimes. Recently, significant improvements in the internal quantum efficiency or ratio of generated photons to injected electrons have been achieved with the advent of phosphorescent complexes with the ability to harvest both singlet and triplet excitons. Since then, a variety of phosphorescent complexes containing heavy metal centers including Os, Ni, Ir, Pd, and Pt have been developed. Thus far, the majority of the work in the field has focused on iridium based complexes. Platinum based complexes, however, have received considerably less attention despite demonstrating efficiency's equal to or better than their iridium analogs. In this study, a series of OLEDs implementing newly developed platinum based complexes were demonstrated with efficiency's or operational lifetimes equal to or better than their iridium analogs for select cases.

In addition to demonstrating excellent device performance in OLEDs, platinum based complexes exhibit unique photophysical properties including the ability to form excimer emission capable of generating broad white light emission from a single emitter and the ability to form narrow band emission from a rigid, tetradentate molecular structure for select cases. These unique photophysical properties were exploited and their optical and electrical properties in a device setting were elucidated.

Utilizing the unique properties of a tridentate Pt complex, Pt-16, a highly efficient white device employing a single emissive layer exhibited a peak EQE of over 20% and high color quality with a CRI of 80 and color coordinates CIE(x=0.33, y=0.33). Furthermore, by employing a rigid, tetradentate platinum complex, PtN1N, with a narrow band emission into a microcavity organic light emitting diode (MOLED), significant enhancement in the external quantum efficiency was achieved. The optimized MOLED structure achieved a light out-coupling enhancement of 1.35 compared to the non-cavity structure with a peak EQE of 34.2%. In addition to demonstrating a high light out-coupling enhancement, the microcavity effect of a narrow band emitter in a MOLED was elucidated.
ContributorsEcton, Jeremy David (Author) / Li, Jian (Thesis advisor) / Adams, James (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2014
152846-Thumbnail Image.png
Description
Organic light emitting diodes (OLEDs) is a rapidly emerging technology based on organic thin film semiconductors. Recently, there has been substantial investment in their use in displays. In less than a decade, OLEDs have grown from a promising academic curiosity into a multi-billion dollar global industry. At the heart of

Organic light emitting diodes (OLEDs) is a rapidly emerging technology based on organic thin film semiconductors. Recently, there has been substantial investment in their use in displays. In less than a decade, OLEDs have grown from a promising academic curiosity into a multi-billion dollar global industry. At the heart of an OLED are emissive molecules that generate light in response to electrical stimulation. Ideal emitters are efficient, compatible with existing materials, long lived, and produce light predominantly at useful wavelengths. Developing an understanding of the photophysical processes that dictate the luminescent properties of emissive materials is vital to their continued development. Chapter 1 and Chapter 2 provide an introduction to the topics presented and the laboratory methods used to explore them. Chapter 3 discusses a series of tridentate platinum complexes. A synthetic method utilizing microwave irradiation was explored, as well as a study of the effects ligand structure had on the excited state properties. Results and techniques developed in this endeavor were used as a foundation for the work undertaken in later chapters. Chapter 4 introduces a series of tetradentate platinum complexes that share a phenoxy-pyridyl (popy) motif. The new molecular design improved efficiency through increased rigidity and modification of the excited state properties. This class of platinum complexes were markedly more efficient than those presented in Chapter 3, and devices employing a green emitting complex of the series achieved nearly 100% electron-to-photon conversion efficiency in an OLED device. Chapter 5 adapts the ligand structure developed in Chapter 4 to palladium. The resulting complexes exceed reported efficiencies of palladium complexes by an order of magnitude. This chapter also provides the first report of a palladium complex as an emitter in an OLED device. Chapter 6 discusses the continuation of development efforts to include carbazolyl components in the ligand. These complexes possess interesting luminescent properties including ultra-narrow emission and metal assisted delayed fluorescence (MADF) emission.
ContributorsTurner, Eric (Author) / Li, Jian (Thesis advisor) / Adams, James (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2014
157441-Thumbnail Image.png
Description
Organic electronics have remained a research topic of great interest over the past few decades, with organic light emitting diodes (OLEDs) emerging as a disruptive technology for lighting and display applications. While OLED performance has improved significantly over the past decade, key issues remain unsolved such as the development of

Organic electronics have remained a research topic of great interest over the past few decades, with organic light emitting diodes (OLEDs) emerging as a disruptive technology for lighting and display applications. While OLED performance has improved significantly over the past decade, key issues remain unsolved such as the development of stable and efficient blue devices. In order to further the development of OLEDs and increase their commercial potential, innovative device architectures, novel emissive materials and high-energy hosts are designed and reported.

OLEDs employing step-wide graded-doped emissive layers were designed to improve charge balance and center the exciton formation zone leading to improved device performance. A red OLED with a peak efficiency of 16.9% and an estimated LT97 over 2,000 hours at 1,000 cd/m2 was achieved. Employing a similar structure, a sky-blue OLED was demonstrated with a peak efficiency of 17.4% and estimated LT70 over 1,300 hours at 1,000 cd/m2. Furthermore, the sky-blue OLEDs color was improved to CIE coordinates of (0.15, 0.25) while maintaining an efficiency of 16.9% and estimated LT70 over 600 hours by incorporating a fluorescent sensitizer. These devices represent literature records at the time of publication for efficient and stable platinum phosphorescent OLEDs.

A newly developed class of emitters, metal-assisted delayed-fluorescence (MADF), are demonstrated to achieve higher-energy emission from a relatively low triplet energy. A green MADF device reaches a peak efficiency of 22% with an estimated LT95 over 350 hours at 1,000 cd/m2. Additionally, a blue charge confined OLED of PtON1a-tBu demonstrated a peak efficiency above 20%, CIE coordinated of (0.16, 0.27), and emission onset at 425 nm.

High triplet energy hosts are required for the realization of stable and efficient deep blue emission. A rigid “M”-type carbazole/fluorene hybrid called mDCzPF and a carbazole/9-silafluorene hybrid called mDCzPSiF are demonstrated to have high triplet energies ET=2.88 eV and 3.03 eV respectively. Both hosts are demonstrated to have reasonable stability and can serve as a template for future material design. The techniques presented here demonstrate alternative approaches for improving the performance of OLED devices and help to bring this technology closer to widespread commercialization.
ContributorsKlimes, Kody George (Author) / Li, Jian (Thesis advisor) / Adams, James (Committee member) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2019
134303-Thumbnail Image.png
Description
Vitamins and minerals are, by definition, essential substances that are necessary for good health, and needed by every cell and organ to function appropriately. A deficiency of any one vitamin or mineral can be very serious. Although a very healthy diet rich in vegetables, fruits, and protein can provide sufficient

Vitamins and minerals are, by definition, essential substances that are necessary for good health, and needed by every cell and organ to function appropriately. A deficiency of any one vitamin or mineral can be very serious. Although a very healthy diet rich in vegetables, fruits, and protein can provide sufficient amounts of most vitamins and minerals, many people do not consume an adequate diet. During pregnancy, there is an increased need for vitamins and minerals to promote a healthy pregnancy and a healthy baby. Prenatal supplements are intended to supplement a normal diet to ensure that adequate amounts of vitamins and minerals are consumed. The US Food and Drug Administration (FDA) has established Recommended Dietary Allowances for total vitamin/mineral intake from food and supplements, but they have not established recommendations for prenatal supplements. Therefore, there is a very wide variation in the content and quality of prenatal supplements. Many prenatal supplements contain only minimal levels of some vitamins and few or no minerals, in order to minimize cost and the number of pills. This results in insufficient vitamin/mineral supplementation for many women, and hence does not fully protect them or their children from pregnancy complications and health problems. Therefore, we have created our own set of recommendations for prenatal supplements. Our recommendations are based primarily on four sources: 1) FDA's Recommended Daily Allowances for pregnant women, which are estimated to meet the needs of 97.5% of healthy pregnant women. 2) FDA's Tolerable Upper Limit, which is the maximum amount of vitamins/minerals that can be safely consumed without any risk of health problems. 3) National Health and Nutrition Examination Survey (NHANES), which evaluates the average intake of vitamins and minerals by women ages 20-40 years in the US 4) Research studies on vitamin/mineral deficiencies or vitamin/mineral supplementation during pregnancy, and the effect on pregnancy, birth, and child health problems. In summary, the RDA establishes minimum recommended levels of vitamin/mineral intake from all sources, and the NHANES establishes the average intake from foods. The difference is what needs to be consumed in a supplement, on average. However, since people vary greatly in the quality of their diet, and since most vitamins and minerals have a high Tolerable Upper Limit, we generally recommend more than the difference between the RDA and the average NHANES. Vitamins generally have a larger Tolerable Upper Limit than do minerals. So, we recommend that prenatal vitamin/mineral supplements contain 100% of the RDA for most vitamins, and about 50% of the RDA for most minerals. However, based on additional research studies described below, in some cases we vary our recommendations from those averages.
ContributorsSorenson, Jacob (Author) / Adams, James (Thesis director) / Pollard, Elena (Committee member) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
130929-Thumbnail Image.png
Description
When viewing vitamins and minerals, it is seen that they are essential for human life and vital for pregnancy. When paired with a healthy diet, prenatal supplements can allow for a healthy pregnancy and reduced maternal and infant health problems. Within this thesis, I was able to break down each

When viewing vitamins and minerals, it is seen that they are essential for human life and vital for pregnancy. When paired with a healthy diet, prenatal supplements can allow for a healthy pregnancy and reduced maternal and infant health problems. Within this thesis, I was able to break down each vitamin and mineral necessary for a healthy pregnancy and birth. Further, I had the opportunity to dive into the addition of Omega-3 Fatty Acid during pregnancy to add more evidence to the study.
ContributorsSaad, Sophia Saad (Author) / Adams, James (Thesis director) / Haiwei, Gu (Committee member) / Coleman, Devon (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-12