Matching Items (4)
Filtering by

Clear all filters

Description
There is no doubt that inductive logic and inductive arguments are vital to the formation of scientific theories. This thesis questions the use of inductive inferences within the sciences. Specifically, it will examine various perspectives on David Hume's famed "problem of induction". Hume proposes that inductive inferences cannot be logically

There is no doubt that inductive logic and inductive arguments are vital to the formation of scientific theories. This thesis questions the use of inductive inferences within the sciences. Specifically, it will examine various perspectives on David Hume's famed "problem of induction". Hume proposes that inductive inferences cannot be logically justified. Here we will explore several assessments of Hume's ideas and inductive logic in general. We will examine the views of philosophers and logicians: Karl Popper, Nelson Goodman, Larry Laudan, and Wesley Salmon. By comparing the radically different views of these philosophers it is possible to gain insight into the complex nature of making inductive inferences. First, Popper agrees with Hume that inductive inferences can never be logically justified. He maintains that the only way around the problem of induction is to rid science of inductive logic altogether. Goodman, on the other hand, believes induction can be justified in much the same way as deduction is justified. Goodman sets up a logical schema in which the rules of induction justify the particular inductive inferences. These general rules are then in turn justified by correct inferences. In this way, Goodman sets up an explication of inductive logic. Laudan and Salmon go on to provide more specific details about how the particular rules of induction should be constructed. Though both Laudan and Salmon are completing the logic schema of Goodman, their approaches are quite different. Laudan takes a more qualitative approach while Salmon uses the quantitative rules of probability to explicate induction. In the end, it can be concluded that it seems quite possible to justify inductive inferences, though there may be more than one possible set of rules of induction.
ContributorsFeddern, James William Edward (Author) / Creath, Richard (Thesis director) / Armendt, Brad (Committee member) / Department of Physics (Contributor) / Department of Military Science (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
171575-Thumbnail Image.png
Description
Moral status questions, (who and what counts morally) are of central concern to moral philosophers. There is also a rich history of psychological work exploring the topic. The received view in psychology of moral status accounts for it as a function of other mind perception. On this view, entities are

Moral status questions, (who and what counts morally) are of central concern to moral philosophers. There is also a rich history of psychological work exploring the topic. The received view in psychology of moral status accounts for it as a function of other mind perception. On this view, entities are morally considerable because they are perceived to have the right sort of minds. This dissertation analyzes and tests this theory, pointing out both empirical and conceptual issues with the received view. The results presented show that important moral intuitions (for example about unjustifiable interpersonal killing) cannot be explained by appealing to other mind perception. Some alternative views of the psychology of moral status are presented, as well as avenues for further research.
ContributorsLaTourelle, Jonathan Jacob (Author) / Creath, Richard (Thesis advisor) / Van Gelderen, Elly (Thesis advisor) / Robert, Jason (Committee member) / Ellison, Karin (Committee member) / Becker, D. Vaughn (Committee member) / Arizona State University (Publisher)
Created2022
166191-Thumbnail Image.png
Description

The relationship between science and religion in the modern day is complex to the point that the lines between them are often blurred. We have a need to distinguish the two from each-other for a variety of practical reasons. Various philosophies, theories, and tests have been suggested on the interaction

The relationship between science and religion in the modern day is complex to the point that the lines between them are often blurred. We have a need to distinguish the two from each-other for a variety of practical reasons. Various philosophies, theories, and tests have been suggested on the interaction between the two and how they are subdivided. One of the sets of criteria which has been shown to work was originally introduced in the opinion of Judge Overton in the case of McLean v Arkansas. McLean v Arkansas is a pivotal case in that it gave us a useful definition of what science is and isn’t in the context of the law. It used the already established Lemon test to show what counts as the establishment of religion. Given the distinction by Judge Overton, there are questions as to whether or not there is even overlap or tension between science and religion, such as in the theory of Stephen Jay Gould’s Nonoverlapping Magisteria (NOMA). What we find in this thesis is that the NOMA principle is doubtful at best. Through the discussion of McLean v. Arkansas, NOMA, and the commentaries of Professors Larry Laudan and Michael Ruse, this thesis develops a contextualization principle that can be used as a guide to develop further theories, particularly regarding the divisions between science and religion.

ContributorsAmmanamanchi, Amrit (Author) / Creath, Richard (Thesis director) / Minteer, Ben (Committee member) / Barrett, The Honors College (Contributor) / School of Politics and Global Studies (Contributor) / School of Life Sciences (Contributor)
Created2022-05
153012-Thumbnail Image.png
Description
Computational tools in the digital humanities often either work on the macro-scale, enabling researchers to analyze huge amounts of data, or on the micro-scale, supporting scholars in the interpretation and analysis of individual documents. The proposed research system that was developed in the context of this dissertation ("Quadriga System") works

Computational tools in the digital humanities often either work on the macro-scale, enabling researchers to analyze huge amounts of data, or on the micro-scale, supporting scholars in the interpretation and analysis of individual documents. The proposed research system that was developed in the context of this dissertation ("Quadriga System") works to bridge these two extremes by offering tools to support close reading and interpretation of texts, while at the same time providing a means for collaboration and data collection that could lead to analyses based on big datasets. In the field of history of science, researchers usually use unstructured data such as texts or images. To computationally analyze such data, it first has to be transformed into a machine-understandable format. The Quadriga System is based on the idea to represent texts as graphs of contextualized triples (or quadruples). Those graphs (or networks) can then be mathematically analyzed and visualized. This dissertation describes two projects that use the Quadriga System for the analysis and exploration of texts and the creation of social networks. Furthermore, a model for digital humanities education is proposed that brings together students from the humanities and computer science in order to develop user-oriented, innovative tools, methods, and infrastructures.
ContributorsDamerow, Julia (Author) / Laubichler, Manfred (Thesis advisor) / Maienschein, Jane (Thesis advisor) / Creath, Richard (Committee member) / Ellison, Karin (Committee member) / Hooper, Wallace (Committee member) / Renn, Jürgen (Committee member) / Arizona State University (Publisher)
Created2014