Matching Items (3)
151284-Thumbnail Image.png
Description
Dietary protein is known to increase postprandial thermogenesis more so than carbohydrates or fats, probably related to the fact that amino acids have no immediate form of storage in the body and can become toxic if not readily incorporated into body tissues or excreted. It is also well documented that

Dietary protein is known to increase postprandial thermogenesis more so than carbohydrates or fats, probably related to the fact that amino acids have no immediate form of storage in the body and can become toxic if not readily incorporated into body tissues or excreted. It is also well documented that subjects report greater satiety on high- versus low-protein diets and that subject compliance tends to be greater on high-protein diets, thus contributing to their popularity. What is not as well known is how a high-protein diet affects resting metabolic rate over time, and what is even less well known is if resting metabolic rate changes significantly when a person consuming an omnivorous diet suddenly adopts a vegetarian one. This pilot study sought to determine whether subjects adopting a vegetarian diet would report decreased satiety or demonstrate a decreased metabolic rate due to a change in protein intake and possible increase in carbohydrates. Further, this study sought to validate a new device called the SenseWear Armband (SWA) to determine if it might be sensitive enough to detect subtle changes in metabolic rate related to diet. Subjects were tested twice on all variables, at baseline and post-test. Independent and related samples tests revealed no significant differences between or within groups for any variable at any time point in the study. The SWA had a strong positive correlation to the Oxycon Mobile metabolic cart but due to a lack of change in metabolic rate, its sensitivity was undetermined. These data do not support the theory that adopting a vegetarian diet results in a long-term change in metabolic rate.
ContributorsMoore, Amy (Author) / Johnston, Carol (Thesis advisor) / Appel, Christy (Thesis advisor) / Gaesser, Glenn (Committee member) / Arizona State University (Publisher)
Created2012
135905-Thumbnail Image.png
Description
This study was conducted to observe the effects of vitamin C supplementation upon the expression of sICAM-1 in asthmatic subject. Two groups were created, each with a sample size of 4 subjects. One group was the vitamin C group (VC) and the other was the placebo group (PL). The study

This study was conducted to observe the effects of vitamin C supplementation upon the expression of sICAM-1 in asthmatic subject. Two groups were created, each with a sample size of 4 subjects. One group was the vitamin C group (VC) and the other was the placebo group (PL). The study was analyzed through observing concentrations of biomolecules present within samples of blood plasma and nasal lavages. These included vitamin C, sICAM-1 expression, and histamine. The following P-values calculated from the data collected from this study. The plasma vitamin C screening was p=0.3, and after 18 days of supplementation, p=0.03. For Nasal ICAM p=0.5 at Day 0, p=0.4 at Day 4, and p=0.9 at Day 18. For the Histamine samples p=0.9 at Day 0 and p=0.9 at Day 18. The following P-values calculated from the data collected from both studies. The plasma vitamin C screening was p=0.8, and after 18 days of supplementation, p=0.03. The change of vitamin C at the end of this study and the combined data both had a P-value that was calculated to be lower than 0.05, which meant that this change was significant because it was due to the intervention and not chance. For Nasal ICAM samples p=0.7 at Day 0, p=0.7 at Day 4, and p=1 at Day 18. For the Histamine p=0.7 at Day 0 and p=0.9 at Day 18. This study carries various implications although the study data was unable to show much significance. This was the second study to test this, and as more research is done, and the sample size grows, one will be able to observe whether this really is the mechanism through which vitamin C plays a role in immunological functions.
ContributorsKapadia, Chirag Vinay (Author) / Johnston, Carol (Thesis director) / LaBaer, Joshua (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
168610-Thumbnail Image.png
Description
Diabetes is the 7th leading cause of death globally. In 2018, 34.2 million Americans had type 2 diabetes. Many symptoms of diabetes are similar to those of scurvy or vitamin C deficiency. Vitamin C marginality and inadequacy are more prevalent in Type 2 Diabetes/prediabetes than with normal glucose tolerance. Intracellular

Diabetes is the 7th leading cause of death globally. In 2018, 34.2 million Americans had type 2 diabetes. Many symptoms of diabetes are similar to those of scurvy or vitamin C deficiency. Vitamin C marginality and inadequacy are more prevalent in Type 2 Diabetes/prediabetes than with normal glucose tolerance. Intracellular vitamin C inadequacy is suspected due to competition between dehydroascorbic acid and glucose at GLUT 1 and 3 cellular receptors. Erythrocyte osmotic fragility is noted in Gulo -/- knockout mice unable to synthesize endogenous vitamin C. The ascorbate deficient red blood cells presented with low cytoskeletal B-spectrin, spherocyte appearance, and impaired deformability. This cross-sectional study investigated the relationships between diabetes status, erythrocyte osmotic fragility, and serum vitamin C status. Participants were aged 18-65, non-smoking, reported no unresolved health complications, and denied prior vitamin C supplementation. Those with T2D indicated diagnosis of >1 year. All participants provided written informed consent and the study was approved by the local Institutional Review Board in January 2021. Participants provided one fasted blood sample. Erythrocyte osmotic fragility was measured via UV/Vis spectrophotometry with various concentrations of sodium chloride (0.85% - 0.10%) to induce osmotic stress. In addition, plasma was extracted and mixed 1:1 with 10% (w/v) metaphosphoric acid in 2 mmol/L disodium EDTA and centrifuged. The supernatant was stored at -80°C until analysis with isocratic reverse-phase UV-HPLC separation. Participant characteristics did not differ significantly between groups apart from age (p< 0.01) and HbA1c (p=0.002). Data are presented for adults with T2D (n=14; 36% female; 55.5±8.2 y; 31.5±9.0 kg/m2; HbA1c: 7.4±1.9%; plasma vitamin C: 36.0±12.2 uM) and without T2D (n=16; 69% female; 38.7±13.5 y; 26.8±6.6 kg/m2; A1c: 5.4±0.3%; plasma vitamin C: 34.8±10.9uM). Erythrocyte osmotic fragility was significantly elevated (+4.4% hemolysis) in adults without T2D at 0.35% saline (p=0.039). Greater VC status (>30 uM) was associated with lower hemolysis at 0.35% NaCl (p=0.031). Erythrocyte osmotic stability was linked to greater vitamin C intake at 0.20% saline in those without T2D (p =0.019). In this pilot study, vitamin C status did not differ significantly by diabetes status. Vitamin C status was directly linked to erythrocyte osmotic stability in adults without T2D.
ContributorsLundy, Ciara Cheyanne (Author) / Johnston, Carol (Thesis advisor) / Sweazea, Karen (Committee member) / Alexon, Christy (Committee member) / Arizona State University (Publisher)
Created2022