Matching Items (7)
Filtering by

Clear all filters

151901-Thumbnail Image.png
Description
ABSTRACT 1. Aposematic signals advertise prey distastefulness or metabolic unprofitability to potential predators and have evolved independently in many prey groups over the course of evolutionary history as a means of protection from predation. Most aposematic signals investigated to date exhibit highly chromatic patterning; however, relatives in these toxic groups

ABSTRACT 1. Aposematic signals advertise prey distastefulness or metabolic unprofitability to potential predators and have evolved independently in many prey groups over the course of evolutionary history as a means of protection from predation. Most aposematic signals investigated to date exhibit highly chromatic patterning; however, relatives in these toxic groups with patterns of very low chroma have been largely overlooked. 2. We propose that bright displays with low chroma arose in toxic prey species because they were more effective at deterring predation than were their chromatic counterparts, especially when viewed in relatively low light environments such as forest understories. 3. We analyzed the reflectance and radiance of color patches on the wings of 90 tropical butterfly species that belong to groups with documented toxicity that vary in their habitat preferences to test this prediction: Warning signal chroma and perceived chromaticity are expected to be higher and brightness lower in species that fly in open environments when compared to those that fly in forested environments. 4. Analyses of the reflectance and radiance of warning color patches and predator visual modeling support this prediction. Moreover, phylogenetic tests, which correct for statistical non-independence due to phylogenetic relatedness of test species, also support the hypothesis of an evolutionary correlation between perceived chromaticity of aposematic signals and the flight habits of the butterflies that exhibit these signals.
ContributorsDouglas, Jonathan Marion (Author) / Rutowski, Ronald L (Thesis advisor) / Gadau, Juergen (Committee member) / McGraw, Kevin J. (Committee member) / Arizona State University (Publisher)
Created2013
151260-Thumbnail Image.png
Description
Social structure affects many aspects of ecology including mating systems, dispersal, and movements. The quality and pattern of associations among individuals can define social structure, thus detailed behavioral observations are vital to understanding species social structure and many other aspects of their ecology. In squamate reptiles (lizards and snakes), detailed

Social structure affects many aspects of ecology including mating systems, dispersal, and movements. The quality and pattern of associations among individuals can define social structure, thus detailed behavioral observations are vital to understanding species social structure and many other aspects of their ecology. In squamate reptiles (lizards and snakes), detailed observations of associations among individuals have been primarily limited to several lineages of lizards and have revealed a variety of social structures, including polygynous family group-living and monogamous pair-living. Here I describe the social structure of two communities within a population of Arizona black rattlesnakes (Crotalus cerberus) using association indices and social network analysis. I used remote timelapse cameras to semi-continuously sample rattlesnake behavior at communal basking sites during early April through mid-May in 2011 and 2012. I calculated an association index for each dyad (proportion of time they spent together) and used these indices to construct a weighted, undirected social network for each community. I found that individual C. cerberus vary in their tendency to form associations and are selective about with whom they associate. Some individuals preferred to be alone or in small groups while others preferred to be in large groups. Overall, rattlesnakes exhibited non-random association patterns, and this result was mainly driven by association selection of adults. Adults had greater association strengths and were more likely to have limited and selected associates. I identified eight subgroups within the two communities (five in one, three in the other), all of which contained adults and juveniles. My study is the first to show selected associations among individual snakes, but to my knowledge it is also the first to use association indices and social network analysis to examine association patterns among snakes. When these methods are applied to other snake species that aggregate, I anticipate the `discovery' of similar social structures.
ContributorsAmarello, Melissa (Author) / DeNardo, Dale F (Thesis advisor) / Sullivan, Brian K. (Committee member) / Schuett, Gordon W. (Committee member) / Arizona State University (Publisher)
Created2012
153959-Thumbnail Image.png
Description
Sexual and social signals have long been thought to play an important role in speciation and diversity; hence, investigations of intraspecific communication may lead to important insights regarding key processes of evolution. Though we have learned much about the control, function, and evolution of animal communication by studying several very

Sexual and social signals have long been thought to play an important role in speciation and diversity; hence, investigations of intraspecific communication may lead to important insights regarding key processes of evolution. Though we have learned much about the control, function, and evolution of animal communication by studying several very common signal types, investigating rare classes of signals may provide new information about how and why animals communicate. My dissertation research focused on rapid physiological color change, a rare signal-type used by relatively few taxa. To answer longstanding questions about this rare class of signals, I employed novel methods to measure rapid color change signals of male veiled chameleons Chamaeleo calyptratus in real-time as seen by the intended conspecific receivers, as well as the associated behaviors of signalers and receivers. In the context of agonistic male-male interactions, I found that the brightness achieved by individual males and the speed of color change were the best predictors of aggression and fighting ability. Conversely, I found that rapid skin darkening serves as a signal of submission for male chameleons, reducing aggression from winners when displayed by losers. Additionally, my research revealed that the timing of maximum skin brightness and speed of brightening were the best predictors of maximum bite force and circulating testosterone levels, respectively. Together, these results indicated that different aspects of color change can communicate information about contest strategy, physiology, and performance ability. Lastly, when I experimentally manipulated the external appearance of chameleons, I found that "dishonestly" signaling individuals (i.e. those whose behavior did not match their manipulated color) received higher aggression from unpainted opponents. The increased aggression received by dishonest signalers suggests that social costs play an important role in maintaining the honesty of rapid color change signals in veiled chameleons. Though the color change abilities of chameleons have interested humans since the time of Aristotle, little was previously known about the signal content of such changes. Documenting the behavioral contexts and information content of these signals has provided an important first step in understanding the current function, underlying control mechanisms, and evolutionary origins of this rare signal type.
ContributorsLigon, Russell (Author) / McGraw, Kevin J. (Committee member) / DeNardo, Dale F (Committee member) / Karsten, Kristopher B (Committee member) / Rutowski, Ronald L (Committee member) / Deviche, Pierre (Committee member) / Arizona State University (Publisher)
Created2015
154807-Thumbnail Image.png
Description
Although mimetic animal coloration has been studied since Darwin's time, many questions on the efficacy, evolution, and function of mimicry remain unanswered. Müller (1879) hypothesized that unpalatable individuals converge on the same conspicuous coloration to reduce predation. However, there are many cases where closely related, unpalatable species have diverged from

Although mimetic animal coloration has been studied since Darwin's time, many questions on the efficacy, evolution, and function of mimicry remain unanswered. Müller (1879) hypothesized that unpalatable individuals converge on the same conspicuous coloration to reduce predation. However, there are many cases where closely related, unpalatable species have diverged from a shared conspicuous pattern. What selection pressures have led to divergence in warning colors? Environmental factors such as ambient light have been hypothesized to affect signal transmission and efficacy in animals. Using two mimetic pairs of Heliconius butterflies, Postman and Blue-white, I tested the hypothesis that animals with divergent mimetic colors segregate by light environment to maximize conspicuousness of the aposematic warning signal under their particular environmental conditions. Each mimetic pair was found in a light environment that differed in brightness and spectral composition, which affected visual conspicuousness differently depending on mimetic color patch. I then used plasticine models in the field to test the hypothesis that mimics had higher survival in the habitat where they occurred. Although predation rates differed between the two habitats, there was no interactive effect of species by habitat type. Through choice experiments, I demonstrated that mimetic individuals preferred to spend time in the light environment where they were most often found and that their absolute visual sensitivity corresponds to the ambient lighting of their respective environment. Eye morphology was then studied to determine if differences in total corneal surface area and/or facet diameters explained the differences in visual sensitivities, but the differences found in Heliconius eye morphology did not match predictions based upon visual sensitivity. To further understand how eye morphology varies with light environments, I studied many tropical butterflies from open and closed habitats to reveal that forest understory butterflies have larger facets compared to butterflies occupying open habitats. Lastly, I tested avian perception of mimicry in a putative Heliconius mimetic assemblage and show that the perceived mimetic resemblance depends upon visual system. This dissertation reveals the importance of light environments on mimicry, coloration, behavior and visual systems of tropical butterflies.
ContributorsSeymoure, Brett M (Author) / Rutowski, Ronald L (Thesis advisor) / McGraw, Kevin J. (Thesis advisor) / McMillan, W. Owen (Committee member) / Pratt, Stephen (Committee member) / Gadau, Jürgen (Committee member) / Arizona State University (Publisher)
Created2016
149679-Thumbnail Image.png
Description
Though it is a widespread adaptation in humans and many other animals, parental care comes in a variety of forms and its subtle physiological costs, benefits, and tradeoffs related to offspring are often unknown. Thus, I studied the hydric, respiratory, thermal, and fitness dynamics of maternal egg-brooding behavior in Children's

Though it is a widespread adaptation in humans and many other animals, parental care comes in a variety of forms and its subtle physiological costs, benefits, and tradeoffs related to offspring are often unknown. Thus, I studied the hydric, respiratory, thermal, and fitness dynamics of maternal egg-brooding behavior in Children's pythons (Antaresia childreni). I demonstrated that tight coiling detrimentally creates a hypoxic developmental environment that is alleviated by periodic postural adjustments. Alternatively, maternal postural adjustments detrimentally elevate rates of egg water loss relative to tight coiling. Despite ventilating postural adjustments, the developmental environment becomes increasingly hypoxic near the end of incubation, which reduces embryonic metabolism. I further demonstrated that brooding-induced hypoxia detrimentally affects offspring size, performance, locomotion, and behavior. Thus, parental care in A. childreni comes at a cost to offspring due to intra-offspring tradeoffs (i.e., those that reflect competing offspring needs, such as water balance and respiration). Next, I showed that, despite being unable to intrinsically produce body heat, A. childreni adjust egg-brooding behavior in response to shifts in nest temperature, which enhances egg temperature (e.g., reduced tight coiling during nest warming facilitated beneficial heat transfer to eggs). Last, I demonstrated that A. childreni adaptively adjust their egg-brooding behaviors due to an interaction between nest temperature and humidity. Specifically, females' behavioral response to nest warming was eliminated during low nest humidity. In combination with other studies, these results show that female pythons sense environmental temperature and humidity and utilize this information at multiple time points (i.e., during gravidity [egg bearing], at oviposition [egg laying], and during egg brooding) to enhance the developmental environment of their offspring. This research demonstrates that maternal behaviors that are simple and subtle, yet easily quantifiable, can balance several critical developmental variables (i.e., thermoregulation, water balance, and respiration).
ContributorsStahlschmidt, Zachary R (Author) / DeNardo, Dale F (Thesis advisor) / Harrison, Jon (Committee member) / McGraw, Kevin (Committee member) / Rutowski, Ronald (Committee member) / Walsberg, Glenn (Committee member) / Arizona State University (Publisher)
Created2011
Description

Agassiz’s desert tortoise (Gopherus agassizii) is a long-lived species native to the Mojave Desert and is listed as threatened under the US Endangered Species Act. To aid conservation efforts for preserving the genetic diversity of this species, we generated a whole genome reference sequence with an annotation based on dee

Agassiz’s desert tortoise (Gopherus agassizii) is a long-lived species native to the Mojave Desert and is listed as threatened under the US Endangered Species Act. To aid conservation efforts for preserving the genetic diversity of this species, we generated a whole genome reference sequence with an annotation based on deep transcriptome sequences of adult skeletal muscle, lung, brain, and blood. The draft genome assembly for G. agassizii has a scaffold N50 length of 252 kbp and a total length of 2.4 Gbp. Genome annotation reveals 20,172 protein-coding genes in the G. agassizii assembly, and that gene structure is more similar to chicken than other turtles. We provide a series of comparative analyses demonstrating (1) that turtles are among the slowest-evolving genome-enabled reptiles, (2) amino acid changes in genes controlling desert tortoise traits such as shell development, longevity and osmoregulation, and (3) fixed variants across the Gopherus species complex in genes related to desert adaptations, including circadian rhythm and innate immune response. This G. agassizii genome reference and annotation is the first such resource for any tortoise, and will serve as a foundation for future analysis of the genetic basis of adaptations to the desert environment, allow for investigation into genomic factors affecting tortoise health, disease and longevity, and serve as a valuable resource for additional studies in this species complex.

Data Availability: All genomic and transcriptomic sequence files are available from the NIH-NCBI BioProject database (accession numbers PRJNA352725, PRJNA352726, and PRJNA281763). All genome assembly, transcriptome assembly, predicted protein, transcript, genome annotation, repeatmasker, phylogenetic trees, .vcf and GO enrichment files are available on Harvard Dataverse (doi:10.7910/DVN/EH2S9K).

ContributorsTollis, Marc (Author) / DeNardo, Dale F (Author) / Cornelius, John A (Author) / Dolby, Greer A (Author) / Edwards, Taylor (Author) / Henen, Brian T. (Author) / Karl, Alice E. (Author) / Murphy, Robert W. (Author) / Kusumi, Kenro (Author)
Created2017-05-31
156740-Thumbnail Image.png
Description
Animals have evolved a diversity of signaling traits, and in some species, they co-occur and are used simultaneously to communicate. Although much work has been done to understand why animals possess multiple signals, studies do not typically address the role of inter-signal interactions, which may vary intra- and inter-specifically and

Animals have evolved a diversity of signaling traits, and in some species, they co-occur and are used simultaneously to communicate. Although much work has been done to understand why animals possess multiple signals, studies do not typically address the role of inter-signal interactions, which may vary intra- and inter-specifically and help drive the evolutionary diversity in signals. For my dissertation, I tested how angle-dependent structural coloration, courtship displays, and the display environment interact and co-evolved in hummingbird species from the “bee” tribe (Mellisugini). Most “bee” hummingbird species possess an angle-dependent structurally colored throat patch and stereotyped courtship (shuttle) display. For 6 U.S. “bee” hummingbird species, I filmed male shuttle displays and mapped out the orientation- and-position-specific movements during the displays. With such display paths, I was able to then recreate each shuttle display in the field by moving plucked feathers from each male in space and time, as if they were naturally displaying, in order to measure each male’s color appearance during their display (i.e. the interactions between male hummingbird plumage, shuttle displays, and environment) from full-spectrum photographs. I tested how these interactions varied intra- and inter-specifically, and which of these originating traits might explain that variation. I first found that the solar-positional environment played a significant role in explaining variation in male color appearance within two species (Selasphorus platycercus and Calypte costae), and that different combinations of color-behavior-environment interactions made some males (in both species) appear bright, colorful, and flashy (i.e. their color appearance changes throughout a display), while other males maintained a consistent (non-flashing) color display. Among species, I found that plumage flashiness positively co-varied with male display behaviors, while another measure of male color appearance (average brightness/colorfulness) co-varied with the feather reflectance characteristics themselves. Additionally, species that had more exaggerated plumage features had less exaggerated shuttle displays. Altogether, my dissertation work illustrates the complexity of multiple signal evolution and how color-behavior-environment interactions are vital to understanding the evolution of colorful and behavioral display traits in animals.
ContributorsSimpson, Richard Kendall (Author) / McGraw, Kevin J. (Thesis advisor) / Rutowski, Ronald L (Committee member) / Pratt, Stephen C (Committee member) / Clark, Christopher J (Committee member) / McGuire, Jimmy A. (Committee member) / Arizona State University (Publisher)
Created2018