Matching Items (12)
Filtering by

Clear all filters

152309-Thumbnail Image.png
Description
Vertebrate genomes demonstrate a remarkable range of sizes from 0.3 to 133 gigabase pairs. The proliferation of repeat elements are a major genomic expansion. In particular, long interspersed nuclear elements (LINES) are autonomous retrotransposons that have the ability to "cut and paste" themselves into a host genome through a mechanism

Vertebrate genomes demonstrate a remarkable range of sizes from 0.3 to 133 gigabase pairs. The proliferation of repeat elements are a major genomic expansion. In particular, long interspersed nuclear elements (LINES) are autonomous retrotransposons that have the ability to "cut and paste" themselves into a host genome through a mechanism called target-primed reverse transcription. LINES have been called "junk DNA," "viral DNA," and "selfish" DNA, and were once thought to be parasitic elements. However, LINES, which diversified before the emergence of many early vertebrates, has strongly shaped the evolution of eukaryotic genomes. This thesis will evaluate LINE abundance, diversity and activity in four anole lizards. An intrageneric analysis will be conducted using comparative phylogenetics and bioinformatics. Comparisons within the Anolis genus, which derives from a single lineage of an adaptive radiation, will be conducted to explore the relationship between LINE retrotransposon activity and causal changes in genomic size and composition.
ContributorsMay, Catherine (Author) / Kusumi, Kenro (Thesis advisor) / Gadau, Juergen (Committee member) / Rawls, Jeffery A (Committee member) / Arizona State University (Publisher)
Created2013
153508-Thumbnail Image.png
Description
Telomerase enzyme is a truly remarkable enzyme specialized for the addition of short, highly repetitive DNA sequences onto linear eukaryotic chromosome ends. The telomerase enzyme functions as a ribonucleoprotein, minimally composed of the highly conserved catalytic telomerase reverse transcriptase and essential telomerase RNA component containing an internalized short template

Telomerase enzyme is a truly remarkable enzyme specialized for the addition of short, highly repetitive DNA sequences onto linear eukaryotic chromosome ends. The telomerase enzyme functions as a ribonucleoprotein, minimally composed of the highly conserved catalytic telomerase reverse transcriptase and essential telomerase RNA component containing an internalized short template region within the vastly larger non-coding RNA. Even among closely related groups of species, telomerase RNA is astonishingly divergent in sequence, length, and secondary structure. This massive disparity is highly prohibitive for telomerase RNA identification from previously unexplored groups of species, which is fundamental for secondary structure determination. Combined biochemical enrichment and computational screening methods were employed for the discovery of numerous telomerase RNAs from the poorly characterized echinoderm lineage. This resulted in the revelation that--while closely related to the vertebrate lineage and grossly resembling vertebrate telomerase RNA--the echinoderm telomerase RNA central domain varies extensively in structure and sequence, diverging even within echinoderms amongst sea urchins and brittle stars. Furthermore, the origins of telomerase RNA within the eukaryotic lineage have remained a persistent mystery. The ancient Trypanosoma telomerase RNA was previously identified, however, a functionally verified secondary structure remained elusive. Synthetic Trypanosoma telomerase was generated for molecular dissection of Trypanosoma telomerase RNA revealing two RNA domains functionally equivalent to those found in known telomerase RNAs, yet structurally distinct. This work demonstrates that telomerase RNA is uncommonly divergent in gross architecture, while retaining critical universal elements.
ContributorsPodlevsky, Joshua (Author) / Chen, Julian (Thesis advisor) / Mangone, Marco (Committee member) / Kusumi, Kenro (Committee member) / Wilson-Rawls, Norma (Committee member) / Arizona State University (Publisher)
Created2015
156871-Thumbnail Image.png
Description
Understanding the diversity, evolutionary relationships, and geographic distribution of species is foundational knowledge in biology. However, this knowledge is lacking for many diverse lineages of the tree of life. This is the case for the desert stink beetles in the tribe Amphidorini LeConte, 1862 (Coleoptera: Tenebrionidae) – a lineage of

Understanding the diversity, evolutionary relationships, and geographic distribution of species is foundational knowledge in biology. However, this knowledge is lacking for many diverse lineages of the tree of life. This is the case for the desert stink beetles in the tribe Amphidorini LeConte, 1862 (Coleoptera: Tenebrionidae) – a lineage of arid-adapted flightless beetles found throughout western North America. Four interconnected studies that jointly increase our knowledge of this group are presented. First, the darkling beetle fauna of the Algodones sand dunes in southern California is examined as a case study to explore the scientific practice of checklist creation. An updated list of the species known from this region is presented, with a critical focus on material now made available through digitization and global aggregation. This part concludes with recommendations for future biodiversity checklist authors. Second, the psammophilic genus Trogloderus LeConte, 1879 is revised. Six new species are described, and the first, multi-gene phylogeny for the genus is inferred. In addition, historical biogeographic reconstructions along with novel hypotheses of speciation patterns within the Intermountain Region are given. In particular, the Kaibab Plateau and Kaiparowitz Formation are found to have promoted speciation on the Colorado Plateau. The Owens Valley and prehistoric Bouse Embayment are similarly hypothesized to drive species diversification in southern California. Third, a novel phylogenomic analysis for the tribe Amphidorini is presented, based on 29 de novo partial transcriptomes. Three putative ortholog sets were discovered and analyzed to infer the relationships between species groups and genera. The existing classification of the tribe is found to be highly inadequate, though the earliest-diverging relationships within the tribe are still in question. Finally, the new phylogenetic framework is used to provide a genus-level revision for the Amphidorini, which previously contained six valid genera and 253 valid species. This updated classification includes more than 100 taxonomic changes and results in the revised tribe consisting of 16 genera, with three being described as new to science.
ContributorsJohnston, Murray Andrew (Author) / Franz, Nico M (Thesis advisor) / Cartwright, Reed (Committee member) / Taylor, Jesse (Committee member) / Pigg, Kathleen (Committee member) / Arizona State University (Publisher)
Created2018
153689-Thumbnail Image.png
Description
Damage to the central nervous system due to spinal cord or traumatic brain injury, as well as degenerative musculoskeletal disorders such as arthritis, drastically impact the quality of life. Regeneration of complex structures is quite limited in mammals, though other vertebrates possess this ability. Lizards are the most closely related

Damage to the central nervous system due to spinal cord or traumatic brain injury, as well as degenerative musculoskeletal disorders such as arthritis, drastically impact the quality of life. Regeneration of complex structures is quite limited in mammals, though other vertebrates possess this ability. Lizards are the most closely related organism to humans that can regenerate de novo skeletal muscle, hyaline cartilage, spinal cord, vasculature, and skin. Progress in studying the cellular and molecular mechanisms of lizard regeneration has previously been limited by a lack of genomic resources. Building on the release of the genome of the green anole, Anolis carolinensis, we developed a second generation, robust RNA-Seq-based genome annotation, and performed the first transcriptomic analysis of tail regeneration in this species. In order to investigate gene expression in regenerating tissue, we performed whole transcriptome and microRNA transcriptome analysis of regenerating tail tip and base and associated tissues, identifying key genetic targets in the regenerative process. These studies have identified components of a genetic program for regeneration in the lizard that includes both developmental and adult repair mechanisms shared with mammals, indicating value in the translation of these findings to future regenerative therapies.
ContributorsHutchins, Elizabeth (Author) / Kusumi, Kenro (Thesis advisor) / Rawls, Jeffrey A. (Committee member) / Denardo, Dale F. (Committee member) / Huentelman, Matthew J. (Committee member) / Arizona State University (Publisher)
Created2015
155019-Thumbnail Image.png
Description
In species with highly heteromorphic sex chromosomes, the degradation of one of the sex chromosomes can result in unequal gene expression between the sexes (e.g., between XX females and XY males) and between the sex chromosomes and the autosomes. Dosage compensation is a process whereby genes on the sex chromosomes

In species with highly heteromorphic sex chromosomes, the degradation of one of the sex chromosomes can result in unequal gene expression between the sexes (e.g., between XX females and XY males) and between the sex chromosomes and the autosomes. Dosage compensation is a process whereby genes on the sex chromosomes achieve equal gene expression which prevents deleterious side effects from having too much or too little expression of genes on sex chromsomes. The green anole is part of a group of species that recently underwent an adaptive radiation. The green anole has XX/XY sex determination, but the content of the X chromosome and its evolution have not been described. Given its status as a model species, better understanding the green anole genome could reveal insights into other species. Genomic analyses are crucial for a comprehensive picture of sex chromosome differentiation and dosage compensation, in addition to understanding speciation.

In order to address this, multiple comparative genomics and bioinformatics analyses were conducted to elucidate patterns of evolution in the green anole and across multiple anole species. Comparative genomics analyses were used to infer additional X-linked loci in the green anole, RNAseq data from male and female samples were anayzed to quantify patterns of sex-biased gene expression across the genome, and the extent of dosage compensation on the anole X chromosome was characterized, providing evidence that the sex chromosomes in the green anole are dosage compensated.

In addition, X-linked genes have a lower ratio of nonsynonymous to synonymous substitution rates than the autosomes when compared to other Anolis species, and pairwise rates of evolution in genes across the anole genome were analyzed. To conduct this analysis a new pipeline was created for filtering alignments and performing batch calculations for whole genome coding sequences. This pipeline has been made publicly available.
ContributorsRupp, Shawn Michael (Author) / Wilson Sayres, Melissa A (Thesis advisor) / Kusumi, Kenro (Committee member) / DeNardo, Dale (Committee member) / Arizona State University (Publisher)
Created2016
Description

Agassiz’s desert tortoise (Gopherus agassizii) is a long-lived species native to the Mojave Desert and is listed as threatened under the US Endangered Species Act. To aid conservation efforts for preserving the genetic diversity of this species, we generated a whole genome reference sequence with an annotation based on dee

Agassiz’s desert tortoise (Gopherus agassizii) is a long-lived species native to the Mojave Desert and is listed as threatened under the US Endangered Species Act. To aid conservation efforts for preserving the genetic diversity of this species, we generated a whole genome reference sequence with an annotation based on deep transcriptome sequences of adult skeletal muscle, lung, brain, and blood. The draft genome assembly for G. agassizii has a scaffold N50 length of 252 kbp and a total length of 2.4 Gbp. Genome annotation reveals 20,172 protein-coding genes in the G. agassizii assembly, and that gene structure is more similar to chicken than other turtles. We provide a series of comparative analyses demonstrating (1) that turtles are among the slowest-evolving genome-enabled reptiles, (2) amino acid changes in genes controlling desert tortoise traits such as shell development, longevity and osmoregulation, and (3) fixed variants across the Gopherus species complex in genes related to desert adaptations, including circadian rhythm and innate immune response. This G. agassizii genome reference and annotation is the first such resource for any tortoise, and will serve as a foundation for future analysis of the genetic basis of adaptations to the desert environment, allow for investigation into genomic factors affecting tortoise health, disease and longevity, and serve as a valuable resource for additional studies in this species complex.

Data Availability: All genomic and transcriptomic sequence files are available from the NIH-NCBI BioProject database (accession numbers PRJNA352725, PRJNA352726, and PRJNA281763). All genome assembly, transcriptome assembly, predicted protein, transcript, genome annotation, repeatmasker, phylogenetic trees, .vcf and GO enrichment files are available on Harvard Dataverse (doi:10.7910/DVN/EH2S9K).

ContributorsTollis, Marc (Author) / DeNardo, Dale F (Author) / Cornelius, John A (Author) / Dolby, Greer A (Author) / Edwards, Taylor (Author) / Henen, Brian T. (Author) / Karl, Alice E. (Author) / Murphy, Robert W. (Author) / Kusumi, Kenro (Author)
Created2017-05-31
171426-Thumbnail Image.png
Description
The weevil genus Pachnaeus Schoenherr, 1826 (Coleoptera: Curculionidae: Entiminae: Eustylini Lacordaire) is revised to accommodate 21 species, including the following 10 new species from the northern Caribbean region: Pachnaeus andersoni sp. nov. (Little Cayman), Pachnaeus eisenbergi sp. nov. (Jamaica), Pachnaeus godivae sp. nov. (Cayman Brac), Pachnaeus gordoni sp. nov. (Jamaica),

The weevil genus Pachnaeus Schoenherr, 1826 (Coleoptera: Curculionidae: Entiminae: Eustylini Lacordaire) is revised to accommodate 21 species, including the following 10 new species from the northern Caribbean region: Pachnaeus andersoni sp. nov. (Little Cayman), Pachnaeus eisenbergi sp. nov. (Jamaica), Pachnaeus godivae sp. nov. (Cayman Brac), Pachnaeus gordoni sp. nov. (Jamaica), Pachnaeus howdenae sp. nov. (Bahamas), Pachnaeus ivieorum sp. nov. (Bahamas with adventive records from Florida), Pachnaeus maestrensis sp. nov. (Cuba), Pachnaeus morelli sp. nov. (Haiti), Pachnaeus obrienorum sp. nov. (Cuba and Bahamas), and Pachnaeus quadrilineatus sp. nov. (Jamaica).Pachnaeus can be distinguished from similar, co-occurring taxa such as Exophthalmus quadrivittatus (Olivier, 1807), Exophthalmus roseipes (Chevrolat, 1876), Exophthalmus vittatus (Linnaeus, 1758), and Diaprepes abbreviatus (Linnaeus, 1758) by (1) the presence of postocular vibrissae, (2) endophallus primarily membranous and sac-like proximally, and long (>3 × width), tubular, and sclerotized distally, (3) additional endophallic sclerites typically absent, (4) a never bicarinate, typically tricarinate, rostrum, and several additional characteristics of the pedon, endophallus, pronotal structure, rostral structure, and scaling. Based on these characters, Pachnaeus sommeri (Munck af Rosenschoeld in Schoenherr, 1840) comb, nov. and Pachnaeus gowdeyi (Marshall, 1926) comb. nov. are transferred into the genus from Exophthalmus Schoenherr and Lachnopus Schoenherr respectively. This revision provides genus and species redescriptions, diagnoses, illustrations, and the first comprehensive key to all 21 species within the present circumscription of Pachnaeus, in addition to reviewing the known biology and observed intraspecific variation within species. The complex taxonomic history of the genus is reviewed, and the evolutionary relationships of its presumed constituent clades are proposed through the construction of informal species groups and subgroups based on diagnosable shared traits. Lectotypes for Pachnaeus citri Marshall, Pachnaeus costatus Perroud, and Exophthalmus sommeri Munck af Rosenschoeld in Schoenherr and paralectotypes of P. citri (3 specimens) and E. sommeri (4 specimens) are designated. New state and national records are reported for Pachnaeus azurescens Gyllenhal in Schoenherr for Florida, U.S.A. and new national records are reported for Pachnaeus litus (Germar) for the Bahamas. Validity of the names Docorhinus Schoenherr, 1823 and Pachnaeus Schoenherr, 1826 is treated. Generic placement of Pachnaeus roseipes Chevrolat, 1876 is explored.
ContributorsReily, Brian Herndon (Author) / Franz, Nico M (Thesis advisor) / Taylor, Jesse (Committee member) / Pigg, Kathleen (Committee member) / Johnston, Murray A (Committee member) / Arizona State University (Publisher)
Created2022
153977-Thumbnail Image.png
Description
Rapid advancements in genomic technologies have increased our understanding of rare human disease. Generation of multiple types of biological data including genetic variation from genome or exome, expression from transcriptome, methylation patterns from epigenome, protein complexity from proteome and metabolite information from metabolome is feasible. "Omics" tools provide comprehensive view

Rapid advancements in genomic technologies have increased our understanding of rare human disease. Generation of multiple types of biological data including genetic variation from genome or exome, expression from transcriptome, methylation patterns from epigenome, protein complexity from proteome and metabolite information from metabolome is feasible. "Omics" tools provide comprehensive view into biological mechanisms that impact disease trait and risk. In spite of available data types and ability to collect them simultaneously from patients, researchers still rely on their independent analysis. Combining information from multiple biological data can reduce missing information, increase confidence in single data findings, and provide a more complete view of genotype-phenotype correlations. Although rare disease genetics has been greatly improved by exome sequencing, a substantial portion of clinical patients remain undiagnosed. Multiple frameworks for integrative analysis of genomic and transcriptomic data are presented with focus on identifying functional genetic variations in patients with undiagnosed, rare childhood conditions. Direct quantitation of X inactivation ratio was developed from genomic and transcriptomic data using allele specific expression and segregation analysis to determine magnitude and inheritance mode of X inactivation. This approach was applied in two families revealing non-random X inactivation in female patients. Expression based analysis of X inactivation showed high correlation with standard clinical assay. These findings improved understanding of molecular mechanisms underlying X-linked disorders. In addition multivariate outlier analysis of gene and exon level data from RNA-seq using Mahalanobis distance, and its integration of distance scores with genomic data found genotype-phenotype correlations in variant prioritization process in 25 families. Mahalanobis distance scores revealed variants with large transcriptional impact in patients. In this dataset, frameshift variants were more likely result in outlier expression signatures than other types of functional variants. Integration of outlier estimates with genetic variants corroborated previously identified, presumed causal variants and highlighted new candidate in previously un-diagnosed case. Integrative genomic approaches in easily attainable tissue will facilitate the search for biomarkers that impact disease trait, uncover pharmacogenomics targets, provide novel insight into molecular underpinnings of un-characterized conditions, and help improve analytical approaches that use large datasets.
ContributorsSzelinger, Szabolcs (Author) / Craig, David W. (Thesis advisor) / Kusumi, Kenro (Thesis advisor) / Narayan, Vinodh (Committee member) / Rosenberg, Michael S. (Committee member) / Huentelman, Matthew J (Committee member) / Arizona State University (Publisher)
Created2015
Description
Cancer is a disease which can affect all animals across the tree of life. Certain species have undergone natural selection to reduce or prevent cancer. Mechanisms to block cancer may include, among others, a species possessing additional paralogues of tumor suppressor genes, or decreasing the number of oncogenes within their

Cancer is a disease which can affect all animals across the tree of life. Certain species have undergone natural selection to reduce or prevent cancer. Mechanisms to block cancer may include, among others, a species possessing additional paralogues of tumor suppressor genes, or decreasing the number of oncogenes within their genome. To understand cancer prevention patterns across species, I developed a bioinformatic pipeline to identify copies of 545 known tumor suppressor genes and oncogenes across 63 species of mammals. I used phylogenetic regressions to test for associations between cancer gene copy numbers and a species’ life history. I found a significant association between cancer gene copies and species’ longevity quotient. Additional paralogues of tumor suppressor genes and oncogenes is not solely dependent on body size, but rather the balance between body size and longevity. Additionally, there is a significance association between life history traits and genes that are both germline and somatic tumor suppressor genes. The bioinformatic pipeline identified large tumor suppressor gene and oncogene copy numbers in the naked mole rat (Heterocephalus glaber), armadillo (Dasypus novemcinctus), and the two-fingered sloth (Choloepus hoffmanni). These results suggest that increased paralogues of tumor suppressor genes and oncogenes are these species’ modes of cancer resistance.
ContributorsSchneider-Utaka, Aika Kunigunda (Author) / Maley, Carlo C (Thesis advisor) / Wilson, Melissa A. (Committee member) / Tollis, Marc (Committee member) / Arizona State University (Publisher)
Created2019
157846-Thumbnail Image.png
Description
Vitellogenin (Vg) is an ancient and highly conserved multifunctional protein. It is primarily known for its role in egg-yolk formation but also serves functions pertaining to immunity, longevity, nutrient storage, and oxidative stress relief. In the honey bee (Apis mellifera), Vg has evolved still further to include important social functions

Vitellogenin (Vg) is an ancient and highly conserved multifunctional protein. It is primarily known for its role in egg-yolk formation but also serves functions pertaining to immunity, longevity, nutrient storage, and oxidative stress relief. In the honey bee (Apis mellifera), Vg has evolved still further to include important social functions that are critical to the maintenance and proliferation of colonies. Here, Vg is used to synthesize royal jelly, a glandular secretion produced by a subset of the worker caste that is fed to the queen and young larvae and which is essential for caste development and social immunity. Moreover, Vg in the worker caste sets the pace of their behavioral development as they transition between different tasks throughout their life. In this dissertation, I make several new discoveries about Vg functionality. First, I uncover a colony-level immune pathway in bees that uses royal jelly as a vehicle to transfer pathogen fragments between nestmates. Second, I show that Vg is localized and expressed in the honey bee digestive tract and suggest possible immunological functions it may be performing there. Finally, I show that Vg enters to nucleus and binds to deoxyribonucleic acid (DNA), acting as a potential transcription factor to regulate expression of many genes pertaining to behavior, metabolism, and signal transduction pathways. These findings represent a significant advance in the understanding of Vg functionality and honey bee biology, and set the stage for many future avenues of research.
ContributorsHarwood, Gyan (Author) / Amdam, Gro V (Thesis advisor) / Kusumi, Kenro (Committee member) / Rabeling, Christian (Committee member) / Chang, Yung (Committee member) / Arizona State University (Publisher)
Created2019