Matching Items (4)
Filtering by

Clear all filters

134152-Thumbnail Image.png
Description
Due to artificial selection, dogs have high levels of phenotypic diversity, yet, there appears to be low genetic diversity within individual breeds. Through their domestication from wolves, dogs have gone through a series of population bottlenecks, which has resulted in a reduction in genetic diversity, with a large amount of

Due to artificial selection, dogs have high levels of phenotypic diversity, yet, there appears to be low genetic diversity within individual breeds. Through their domestication from wolves, dogs have gone through a series of population bottlenecks, which has resulted in a reduction in genetic diversity, with a large amount of linkage disequilibrium and the persistence of deleterious mutations. This has led to an increased susceptibility to a multitude of diseases, including cancer. To study the effects of artificial selection and life history characteristics on the risk of cancer mortality, we collected cancer mortality data from four studies as well as the percent of heterozygosity, body size, lifespan and breed group for 201 dog breeds. We also collected specific types of cancer breeds were susceptible to and compared the dog cancer mortality patterns to the patterns observed in other mammals. We found a relationship between cancer mortality rate and heterozygosity, body size, lifespan as well as breed group. Higher levels of heterozygosity were also associated with longer lifespan. These results indicate larger breeds, such as Irish Water Spaniels, Flat-coated Retrievers and Bernese Mountain Dogs, are more susceptible to cancer, with lower heterozygosity and lifespan. These breeds are also more susceptible to sarcomas, as opposed to carcinomas in smaller breeds, such as Miniature Pinschers, Chihuahuas, and Pekingese. Other mammals show that larger and long-lived animals have decreased cancer mortality, however, within dog breeds, the opposite relationship is observed. These relationships could be due to the trade-off between cellular maintenance and growing fast and large, with higher expression of growth factors, such as IGF-1. This study further demonstrates the relationships between cancer mortality, heterozygosity, and life history traits and exhibits dogs as an important model organism for understanding the relationship between genetics and health.
ContributorsBalsley, Cassandra Sierra (Author) / Maley, Carlo (Thesis director) / Wynne, Clive (Committee member) / Tollis, Marc (Committee member) / School of Life Sciences (Contributor) / School of Human Evolution and Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
Description

Agassiz’s desert tortoise (Gopherus agassizii) is a long-lived species native to the Mojave Desert and is listed as threatened under the US Endangered Species Act. To aid conservation efforts for preserving the genetic diversity of this species, we generated a whole genome reference sequence with an annotation based on dee

Agassiz’s desert tortoise (Gopherus agassizii) is a long-lived species native to the Mojave Desert and is listed as threatened under the US Endangered Species Act. To aid conservation efforts for preserving the genetic diversity of this species, we generated a whole genome reference sequence with an annotation based on deep transcriptome sequences of adult skeletal muscle, lung, brain, and blood. The draft genome assembly for G. agassizii has a scaffold N50 length of 252 kbp and a total length of 2.4 Gbp. Genome annotation reveals 20,172 protein-coding genes in the G. agassizii assembly, and that gene structure is more similar to chicken than other turtles. We provide a series of comparative analyses demonstrating (1) that turtles are among the slowest-evolving genome-enabled reptiles, (2) amino acid changes in genes controlling desert tortoise traits such as shell development, longevity and osmoregulation, and (3) fixed variants across the Gopherus species complex in genes related to desert adaptations, including circadian rhythm and innate immune response. This G. agassizii genome reference and annotation is the first such resource for any tortoise, and will serve as a foundation for future analysis of the genetic basis of adaptations to the desert environment, allow for investigation into genomic factors affecting tortoise health, disease and longevity, and serve as a valuable resource for additional studies in this species complex.

Data Availability: All genomic and transcriptomic sequence files are available from the NIH-NCBI BioProject database (accession numbers PRJNA352725, PRJNA352726, and PRJNA281763). All genome assembly, transcriptome assembly, predicted protein, transcript, genome annotation, repeatmasker, phylogenetic trees, .vcf and GO enrichment files are available on Harvard Dataverse (doi:10.7910/DVN/EH2S9K).

ContributorsTollis, Marc (Author) / DeNardo, Dale F (Author) / Cornelius, John A (Author) / Dolby, Greer A (Author) / Edwards, Taylor (Author) / Henen, Brian T. (Author) / Karl, Alice E. (Author) / Murphy, Robert W. (Author) / Kusumi, Kenro (Author)
Created2017-05-31
158171-Thumbnail Image.png
Description
The Desert Southwest has no shortage of representations in literature, art, and film. Its aesthetics—open horizons, strange landscapes, and vast wilderness—inform and saturate the early Western films of John Ford, the paintings of Georgia O’Keeffe, Edward Abbey’s Desert Solitaire, and continue in today’s popular imaginations. My work acknowledges such contributions

The Desert Southwest has no shortage of representations in literature, art, and film. Its aesthetics—open horizons, strange landscapes, and vast wilderness—inform and saturate the early Western films of John Ford, the paintings of Georgia O’Keeffe, Edward Abbey’s Desert Solitaire, and continue in today’s popular imaginations. My work acknowledges such contributions and then it challenges them: why are those names more widely associated with the Southwest than Luis Alberto Urrea, Alicia Gaspar de Alba, or Pat Mora?

The project intersects the environmental humanities, critical theory, and cultural studies with the Desert Southwest. It explores the fullness of desert places with regard to cultures, borders, and languages, as well as nonhuman forces and intensities like heat, light, and distance. Dispelling the dominant notion of desert as void or wasteland, it sets a stage to suit the polyvocality of desert place. My work is interdisciplinary because the desert demands it. It begins with Cormac McCarthy’s Blood Meridian in order to reorient readers towards the rupture of the US War With Mexico which helped set the national and cultural borders in effect today. I then explore Denis Villeneuve’s film Sicario to emphasize the correlation between political hierarchy and verticality; those who can experience the desert from above are exempt from the conditions below, where Urrea’s The Devil’s Highway and Gaspar de Alba’s Desert Blood take place. The novels expose the immanence and violence of being on the ground in the desert and at the lower end of said hierarchies. Analyzing Yuri Herrera’s Signs Preceding the End of the World and Mora’s Encantado enables what I term a desert hauntology to produce a desert full of memory, myth, ancestors, and enchantment. Finally, the project puts visual artists James Turrell and Rafa Esparza in conversation to discover a desert phenomenology. The result is an instigation of how far is too far when decentering the human, and what role does place-based art play in creating and empowering community.

John Ford was from Maine. Georgia O’Keeffe, from Wisconsin. Edward Abbey, Pennsylvania. As someone born and raised in the Desert Southwest, I’ve written the project I have yet to encounter.
ContributorsOsuna, Celina (Author) / Broglio, Ronald (Thesis advisor) / McHugh, Kevin (Committee member) / Bell, Matt (Committee member) / Arizona State University (Publisher)
Created2020
132536-Thumbnail Image.png
Description
Human activity produces ambient noise that potentially alters species’ abilities to communicate with each other—among other impacts. Given that birds are known to be sensitive to structural changes in habitat and highly communicative through sound, it is beneficial to understand how changing acoustic ecologies and ambient noise impact birds’

Human activity produces ambient noise that potentially alters species’ abilities to communicate with each other—among other impacts. Given that birds are known to be sensitive to structural changes in habitat and highly communicative through sound, it is beneficial to understand how changing acoustic ecologies and ambient noise impact birds’ ability to communicate in their respective environments. In this study, mockingbird calls from an urban, desert, and intermediate study site were recorded and analyzed for differences in acoustic properties. Acoustic properties such as frequency and amplitude differed significantly across sites as it was determined that mockingbirds in urban areas increase both the peak frequency and amplitude of their calls in order to communicate. This study identifies what these changes in acoustic properties mean in relation to the survival and conservation of birds and concludes with recommendations for novel research.
ContributorsReynolds, Bailey Susana (Author) / Pearson, David (Thesis director) / Walters, Molina (Committee member) / School of Sustainability (Contributor) / School of Life Sciences (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05