Matching Items (16)
Filtering by

Clear all filters

152029-Thumbnail Image.png
Description
Induced pluripotent stem cells (iPSCs) are an intriguing approach for neurological disease modeling, because neural lineage-specific cell types that retain the donors' complex genetics can be established in vitro. The statistical power of these iPSC-based models, however, is dependent on accurate diagnoses of the somatic cell donors; unfortunately, many neurodegenerative

Induced pluripotent stem cells (iPSCs) are an intriguing approach for neurological disease modeling, because neural lineage-specific cell types that retain the donors' complex genetics can be established in vitro. The statistical power of these iPSC-based models, however, is dependent on accurate diagnoses of the somatic cell donors; unfortunately, many neurodegenerative diseases are commonly misdiagnosed in live human subjects. Postmortem histopathological examination of a donor's brain, combined with premortem clinical criteria, is often the most robust approach to correctly classify an individual as a disease-specific case or unaffected control. We describe the establishment of primary dermal fibroblasts cells lines from 28 autopsy donors. These fibroblasts were used to examine the proliferative effects of establishment protocol, tissue amount, biopsy site, and donor age. As proof-of-principle, iPSCs were generated from fibroblasts from a 75-year-old male, whole body donor, defined as an unaffected neurological control by both clinical and histopathological criteria. To our knowledge, this is the first study describing autopsy donor-derived somatic cells being used for iPSC generation and subsequent neural differentiation. This unique approach also enables us to compare iPSC-derived cell cultures to endogenous tissues from the same donor. We utilized RNA sequencing (RNA-Seq) to evaluate the transcriptional progression of in vitro-differentiated neural cells (over a timecourse of 0, 35, 70, 105 and 140 days), and compared this with donor-identical temporal lobe tissue. We observed in vitro progression towards the reference brain tissue, supported by (i) a significant increasing monotonic correlation between the days of our timecourse and the number of actively transcribed protein-coding genes and long intergenic non-coding RNAs (lincRNAs) (P < 0.05), consistent with the transcriptional complexity of the brain, (ii) an increase in CpG methylation after neural differentiation that resembled the epigenomic signature of the endogenous tissue, and (iii) a significant decreasing monotonic correlation between the days of our timecourse and the percent of in vitro to brain-tissue differences (P < 0.05) for tissue-specific protein-coding genes and all putative lincRNAs. These studies support the utility of autopsy donors' somatic cells for iPSC-based neurological disease models, and provide evidence that in vitro neural differentiation can result in physiologically progression.
ContributorsHjelm, Brooke E (Author) / Craig, David W. (Thesis advisor) / Wilson-Rawls, Norma J. (Thesis advisor) / Huentelman, Matthew J. (Committee member) / Mason, Hugh S. (Committee member) / Kusumi, Kenro (Committee member) / Arizona State University (Publisher)
Created2013
Description
Well-established model systems exist in four out of the seven major classes of vertebrates. These include the mouse, chicken, frog and zebrafish. Noticeably missing from this list is a reptilian model organism for comparative studies between the vertebrates and for studies of biological processes unique to reptiles. To help fill

Well-established model systems exist in four out of the seven major classes of vertebrates. These include the mouse, chicken, frog and zebrafish. Noticeably missing from this list is a reptilian model organism for comparative studies between the vertebrates and for studies of biological processes unique to reptiles. To help fill in this gap the green anole lizard, Anolis carolinensis, is being adapted as a model organism. Despite the recent release of the complete genomic sequence of the A. carolinensis, the lizard lacks some resources to aid researchers in their studies. Particularly, the lack of transcriptomic resources for lizard has made it difficult to identify genes complete with alternative splice forms and untranslated regions (UTRs). As part of this work the genome annotation for A. carolinensis was improved through next generation sequencing and assembly of the transcriptomes from 14 different adult and embryonic tissues. This revised annotation of the lizard will improve comparative studies between vertebrates, as well as studies within A. carolinensis itself, by providing more accurate gene models, which provide the bases for molecular studies. To demonstrate the utility of the improved annotations and reptilian model organism, the developmental process of somitogenesis in the lizard was analyzed and compared with other vertebrates. This study identified several key features both divergent and convergent between the vertebrates, which was not previously known before analysis of a reptilian model organism. The improved genome annotations have also allowed for molecular studies of tail regeneration in the lizard. With the annotation of 3' UTR sequences and next generation sequencing, it is now possible to do expressional studies of miRNA and predict their mRNA target transcripts at genomic scale. Through next generation small RNA sequencing and subsequent analysis, several differentially expressed miRNAs were identified in the regenerating tail, suggesting miRNA may play a key role in regulating this process in lizards. Through miRNA target prediction several key biological pathways were identified as potentially under the regulation of miRNAs during tail regeneration. In total, this work has both helped advance A. carolinensis as model system and displayed the utility of a reptilian model system.
ContributorsEckalbar, Walter L (Author) / Kusumi, Kenro (Thesis advisor) / Huentelman, Matthew (Committee member) / Rawls, Jeffery (Committee member) / Wilson-Rawls, Norma (Committee member) / Arizona State University (Publisher)
Created2012
134152-Thumbnail Image.png
Description
Due to artificial selection, dogs have high levels of phenotypic diversity, yet, there appears to be low genetic diversity within individual breeds. Through their domestication from wolves, dogs have gone through a series of population bottlenecks, which has resulted in a reduction in genetic diversity, with a large amount of

Due to artificial selection, dogs have high levels of phenotypic diversity, yet, there appears to be low genetic diversity within individual breeds. Through their domestication from wolves, dogs have gone through a series of population bottlenecks, which has resulted in a reduction in genetic diversity, with a large amount of linkage disequilibrium and the persistence of deleterious mutations. This has led to an increased susceptibility to a multitude of diseases, including cancer. To study the effects of artificial selection and life history characteristics on the risk of cancer mortality, we collected cancer mortality data from four studies as well as the percent of heterozygosity, body size, lifespan and breed group for 201 dog breeds. We also collected specific types of cancer breeds were susceptible to and compared the dog cancer mortality patterns to the patterns observed in other mammals. We found a relationship between cancer mortality rate and heterozygosity, body size, lifespan as well as breed group. Higher levels of heterozygosity were also associated with longer lifespan. These results indicate larger breeds, such as Irish Water Spaniels, Flat-coated Retrievers and Bernese Mountain Dogs, are more susceptible to cancer, with lower heterozygosity and lifespan. These breeds are also more susceptible to sarcomas, as opposed to carcinomas in smaller breeds, such as Miniature Pinschers, Chihuahuas, and Pekingese. Other mammals show that larger and long-lived animals have decreased cancer mortality, however, within dog breeds, the opposite relationship is observed. These relationships could be due to the trade-off between cellular maintenance and growing fast and large, with higher expression of growth factors, such as IGF-1. This study further demonstrates the relationships between cancer mortality, heterozygosity, and life history traits and exhibits dogs as an important model organism for understanding the relationship between genetics and health.
ContributorsBalsley, Cassandra Sierra (Author) / Maley, Carlo (Thesis director) / Wynne, Clive (Committee member) / Tollis, Marc (Committee member) / School of Life Sciences (Contributor) / School of Human Evolution and Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
135193-Thumbnail Image.png
Description
This purpose of this thesis study was to examine variables of the "War on Cancer" frame, loss-gain prime, and patient gender on treatment decision for advanced cancer patients. A total of 291 participants (141 females) participated in an online survey experiment and were randomly assigned to one of eight possible

This purpose of this thesis study was to examine variables of the "War on Cancer" frame, loss-gain prime, and patient gender on treatment decision for advanced cancer patients. A total of 291 participants (141 females) participated in an online survey experiment and were randomly assigned to one of eight possible conditions, each of which were comprised of a combination of one of two levels for three total independent variables: war frame ("War on Cancer" frame or neutral frame), loss-gain prime (loss prime or gain prime), and patient gender (female or male). Each of the three variables were operationalized to determine whether or not the exposure to the war on cancer paradigm, loss-frame language, or male patient gender would increase the likelihood of a participant choosing a more aggressive cancer treatment. Participants read a patient scenario and were asked to respond to questions related to motivating factors. Participants were then asked to report preference for one of two treatment decisions. Participants were then asked to provide brief demographic information in addition to responding to questions about military history, war attitudes, and cancer history. The aforementioned manipulations sought to determine whether exposure to various factors would make a substantive difference in final treatment decision. Contrary to the predicted results, participants in the war frame condition (M = 3.85, SD = 1.48) were more likely to choose the pursuit of palliative care (as opposed to aggressive treatment) than participants in the neutral frame condition (M = 3.54, SD = 1.23). Ultimately, these significant findings suggest that there is practical information to be gained from treatment presentation manipulations. By arming healthcare providers with a more pointed understanding of the nuances of treatment presentation, we can hope to empower patients, their loved ones, and healthcare providers entrenched in the world of cancer treatment.
ContributorsKnowles, Madelyn Ann (Author) / Kwan, Virginia S. Y. (Thesis director) / Presson, Clark (Committee member) / Salamone, Damien (Committee member) / Department of Psychology (Contributor) / School of Human Evolution and Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
134774-Thumbnail Image.png
Description
Through a standpoint feminist perspective (Harding 2009) I conducted a situational analysis (Clarke, 2015) that examined academic literature and cancer support discussion boards (DBs) to identify how Western biomedicine, specifically oncology, can integrate complementary and alternative medicine (CAM) to improve cancer treatment in children. The aims of this project were:

Through a standpoint feminist perspective (Harding 2009) I conducted a situational analysis (Clarke, 2015) that examined academic literature and cancer support discussion boards (DBs) to identify how Western biomedicine, specifically oncology, can integrate complementary and alternative medicine (CAM) to improve cancer treatment in children. The aims of this project were: 1) to identify the CAM treatments that are being used to alleviate the side effects from oncological treatments and/or treat pediatric cancers; 2) to compare the subjective experience of CAM to Western biomedicine of cancer patients who leave comments on Group Loop, Cancer Compass and Cancer Forums, which are online support groups (N=20). I used grounded theory and situational mapping to analyze discussion threads. The participants identified using the following CAM treatments: herbs, imagery, prayer, stinging nettle, meditation, mind-body therapies and supplements. The participants turned to CAM treatments when their cancer was late-stage or terminal, often as an integrative and not exclusively to treat their cancer. CAM was more "effective" than biomedical oncology treatment at improving their overall quality of life and functionality. We found that youth on discussion boards did not discuss CAM treatments like the adult participants, but all participants visited these sites for support and verification of their cancer treatments. My main integration recommendation is to combine mind-body CAM therapies with biomedical treatment. This project fills the gap in literature that ignores the ideas of vulnerable populations by providing the experiences of adult and pediatric cancer patients, and that of their families. It is applicable to areas of the social studies of medicine, patient care, and families suffering from cancer. KEYWORDS: Cancer; Complementary and Alternative Medicine; Situational Analysis; Standpoint Feminism
ContributorsEsposito, Sydney Maria (Author) / Martinez, Airín (Thesis director) / Hruschka, Daniel (Committee member) / School of Human Evolution and Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
133473-Thumbnail Image.png
Description
Laboratory animals represent an invaluable, yet controversial, resource in the field of biomedical research. Animal research has been behind many influential discoveries in the field of emerging therapeutics. They provide the link between the theory of the lab bench and the functional application of medicine to influence human health. The

Laboratory animals represent an invaluable, yet controversial, resource in the field of biomedical research. Animal research has been behind many influential discoveries in the field of emerging therapeutics. They provide the link between the theory of the lab bench and the functional application of medicine to influence human health. The use of animals in research is a consideration which must be heavily weighed, and the implementation must be carried out at a very high standard in order to retain research integrity and responsibility. We are in the process of conducting an experiment using laboratory mice to demonstrate cancer treatment using vaccinia (VACV) mutants as a possible oncolytic therapy for certain strains of melanoma. VACV is a double-stranded DNA poxvirus with a large and easily altered genome. This virus contains many genes dedicated to immune evasion, but has shown sensitivity to cell death by necroptosis in mouse studies (5). We have identified the absence of the kinase RIP3 which is vital in the necroptosis pathway as a potential target for oncolytic therapy using VACV mutants in specific strains of melanoma. Multiple groups of SCID Beige mice were inoculated with different melanoma cell lines and observed for tumor growth. Upon reaching 1 cm3 in volume, tumors were injected with either VACV- Δ83N, VACV- Δ54N, or PBS, and observed for regression. It was hypothesized that melanoma tumors that are RIP3-/- such as the MDA5 cell line will show regression, but melanoma tumors that are RIP3-positive and capable of necroptosis, such as the 2427 cell line, will resist viral replication and continue to proliferate. Our results so far tentatively support this hypothesis, but the data collection is ongoing. Strict and specific protocols with regard to the ethical and responsible use of mice have been implemented and upheld throughout the experiment. Animals are closely monitored, and if their quality of life becomes too poor to justify their continued use in the experiment, they are humanely euthanized, even at the expense of valuable data. The importance of commitment to a high ethical standard is pervasive throughout our work. Animals represent an invaluable contribution to research, and it is important to maintain high standards and transparency with regard to their use. Education and engagement in critical discussions about the use and care of animals in the laboratory contribute to the overall merit and legitimacy of biomedical research in the public and professional eye as a whole, and give legitimacy to the continued use of animals as models to advance science and health.
ContributorsBergamaschi, Julia (Author) / Kibler, Karen (Thesis director) / Jacobs, Bertram (Committee member) / School of Human Evolution and Social Change (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133149-Thumbnail Image.png
Description
Bats (order Chiroptera) are the longest lived mammals for their size, with particularly extreme longevity evolving in the family Vespertilionidae, or vesper bats. Because of this, researchers have proposed using bats to study ageing and cancer suppression. Here, we study gene duplications across mammalian genomes and show that, similar to

Bats (order Chiroptera) are the longest lived mammals for their size, with particularly extreme longevity evolving in the family Vespertilionidae, or vesper bats. Because of this, researchers have proposed using bats to study ageing and cancer suppression. Here, we study gene duplications across mammalian genomes and show that, similar to previous findings in elephants, bats have experienced duplications of the tumor suppressor gene TP53, including five genomic copies in the genome of the little brown bat (Myotis lucifugus) and two copies in Brandt's bat (Myotis brandtii). These species can live 37 and 41 years, respectively, despite having an adult body mass of only ~7 grams. We use evolutionary genetics and next generation sequencing approaches to show that positive selection has acted on the TP53 locus across bats, and two recently duplicated TP53 gene copies in the little brown bat are both highly conserved and expressed, suggesting they are functional. We also report an extraordinary genomic copy number expansion of the tumor suppressor gene FBXO31 in the common ancestor of vesper bats which accelerated in the Myotis lineage, leading to 34\u201457 copies and the expression of 20 functional FBXO31 homologs in Brandt's bat. As FBXO31 directs the degradation of MDM2, which is a negative regulator of TP53, we suggest that increased expression of both FBXO31 and TP53 may be related to an enhanced DNA-damage response to genotoxic stress brought on by long lifespans and rapid metabolic rates in bats.
ContributorsSchneider-Utaka, Aika Kunigunda (Author) / Maley, Carlo (Thesis director) / Wilson Sayres, Melissa (Committee member) / Tollis, Marc (Committee member) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
135088-Thumbnail Image.png
Description
The anthracycline drug Doxorubicin (DOX) is a highly effective treatment for breast cancer, but its clinical utility is limited by dose-dependent cardiovascular toxicity. The toxic effects are partly attributed to DOX-induced generation of reactive oxygen species, which may impair nitric oxide-mediated vasodilation. Exercise training activates antioxidant defense mechanisms and is

The anthracycline drug Doxorubicin (DOX) is a highly effective treatment for breast cancer, but its clinical utility is limited by dose-dependent cardiovascular toxicity. The toxic effects are partly attributed to DOX-induced generation of reactive oxygen species, which may impair nitric oxide-mediated vasodilation. Exercise training activates antioxidant defense mechanisms and is thus hypothesized to counteract oxidative stress when initiated prior to DOX administration. Adult 8-week old, ovariectomized female Sprague-Dawley rats were divided into 4 groups: sedentary + vehicle (Sed+Veh); Sed+DOX; exercise + veh (Ex+Veh); and Ex+DOX. Rats in the exercise groups were preconditioned with high intensity interval training consisting of 4x4 minute bouts of exercise at 85-95% of VO2peak separated by 2 minutes of active recovery performed 5 days per week. Exercise was implemented one week prior to the first injection and continued throughout the study. Animals received either DOX (4mg/kg) or veh (saline) intraperitoneal injections bi-weekly for a cumulative dose of 12 mg/kg per animal. Five days following the final injection, animals were anesthetized with isoflurane, decapitated and aortas and perivascular adipose tissue (PVAT) were removed for western blot analyses. No significant differences in aortic protein expression were detected for inducible nitric oxide synthase (iNOS) or the upstream activator of endothelial nitric oxide synthase (eNOS), Akt, across groups (p>0.05), whereas eNOS protein expression was significantly downregulated in Sed+DOX (p=0.003). In contrast, eNOS expression was not altered in Ex+DOX treated animals. Protein expression of iNOS in PVAT was upregulated with exercise in the DOX-treated groups (p=0.039). These findings suggest that exercise preconditioning may help mitigate vascular effects of DOX by preventing downregulation of eNOS in the aorta.
ContributorsO'Neill, Liam Martin (Author) / Sweazea, Karen (Thesis director) / Angadi, Siddhartha (Committee member) / Dickinson, Jared (Committee member) / School of Human Evolution and Social Change (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
153689-Thumbnail Image.png
Description
Damage to the central nervous system due to spinal cord or traumatic brain injury, as well as degenerative musculoskeletal disorders such as arthritis, drastically impact the quality of life. Regeneration of complex structures is quite limited in mammals, though other vertebrates possess this ability. Lizards are the most closely related

Damage to the central nervous system due to spinal cord or traumatic brain injury, as well as degenerative musculoskeletal disorders such as arthritis, drastically impact the quality of life. Regeneration of complex structures is quite limited in mammals, though other vertebrates possess this ability. Lizards are the most closely related organism to humans that can regenerate de novo skeletal muscle, hyaline cartilage, spinal cord, vasculature, and skin. Progress in studying the cellular and molecular mechanisms of lizard regeneration has previously been limited by a lack of genomic resources. Building on the release of the genome of the green anole, Anolis carolinensis, we developed a second generation, robust RNA-Seq-based genome annotation, and performed the first transcriptomic analysis of tail regeneration in this species. In order to investigate gene expression in regenerating tissue, we performed whole transcriptome and microRNA transcriptome analysis of regenerating tail tip and base and associated tissues, identifying key genetic targets in the regenerative process. These studies have identified components of a genetic program for regeneration in the lizard that includes both developmental and adult repair mechanisms shared with mammals, indicating value in the translation of these findings to future regenerative therapies.
ContributorsHutchins, Elizabeth (Author) / Kusumi, Kenro (Thesis advisor) / Rawls, Jeffrey A. (Committee member) / Denardo, Dale F. (Committee member) / Huentelman, Matthew J. (Committee member) / Arizona State University (Publisher)
Created2015
155019-Thumbnail Image.png
Description
In species with highly heteromorphic sex chromosomes, the degradation of one of the sex chromosomes can result in unequal gene expression between the sexes (e.g., between XX females and XY males) and between the sex chromosomes and the autosomes. Dosage compensation is a process whereby genes on the sex chromosomes

In species with highly heteromorphic sex chromosomes, the degradation of one of the sex chromosomes can result in unequal gene expression between the sexes (e.g., between XX females and XY males) and between the sex chromosomes and the autosomes. Dosage compensation is a process whereby genes on the sex chromosomes achieve equal gene expression which prevents deleterious side effects from having too much or too little expression of genes on sex chromsomes. The green anole is part of a group of species that recently underwent an adaptive radiation. The green anole has XX/XY sex determination, but the content of the X chromosome and its evolution have not been described. Given its status as a model species, better understanding the green anole genome could reveal insights into other species. Genomic analyses are crucial for a comprehensive picture of sex chromosome differentiation and dosage compensation, in addition to understanding speciation.

In order to address this, multiple comparative genomics and bioinformatics analyses were conducted to elucidate patterns of evolution in the green anole and across multiple anole species. Comparative genomics analyses were used to infer additional X-linked loci in the green anole, RNAseq data from male and female samples were anayzed to quantify patterns of sex-biased gene expression across the genome, and the extent of dosage compensation on the anole X chromosome was characterized, providing evidence that the sex chromosomes in the green anole are dosage compensated.

In addition, X-linked genes have a lower ratio of nonsynonymous to synonymous substitution rates than the autosomes when compared to other Anolis species, and pairwise rates of evolution in genes across the anole genome were analyzed. To conduct this analysis a new pipeline was created for filtering alignments and performing batch calculations for whole genome coding sequences. This pipeline has been made publicly available.
ContributorsRupp, Shawn Michael (Author) / Wilson Sayres, Melissa A (Thesis advisor) / Kusumi, Kenro (Committee member) / DeNardo, Dale (Committee member) / Arizona State University (Publisher)
Created2016