Matching Items (7)
Filtering by

Clear all filters

136419-Thumbnail Image.png
Description
A literature review summarizing the current status of conservation efforts of the Mojave Desert tortoise (Gopherus agassizii) including a brief overview of the Endangered Species Act (ESA) and its applicability to this species' conservation. A genetic and physiological comparison of the morphologically similar Mojave species with the Sonoran (Gopherus morafkai)

A literature review summarizing the current status of conservation efforts of the Mojave Desert tortoise (Gopherus agassizii) including a brief overview of the Endangered Species Act (ESA) and its applicability to this species' conservation. A genetic and physiological comparison of the morphologically similar Mojave species with the Sonoran (Gopherus morafkai) species proceeded by an analysis of if and how the ESA should apply to the Sonoran population. Analysis of current plans and interagency cooperations followed by a multi-step proposal on how best to conserve the Sonoran population of Desert tortoise.
ContributorsKulik, Elise Chikako (Author) / Kusumi, Kenro (Thesis director) / Tollis, Marc (Committee member) / Wilson Sayres, Melissa (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Life Sciences (Contributor)
Created2015-05
133855-Thumbnail Image.png
Description
The International Union for Conservation of Nature's Red List of Threatened Species is the most comprehensive and objective global approach to evaluate the conservation status of species by categorizing species based on relative extinction risk. For the Global Muranidae IUCN Red List assessment, all known, taxonomically valid species of Muraenidae

The International Union for Conservation of Nature's Red List of Threatened Species is the most comprehensive and objective global approach to evaluate the conservation status of species by categorizing species based on relative extinction risk. For the Global Muranidae IUCN Red List assessment, all known, taxonomically valid species of Muraenidae were assessed for their extinction risk using the IUCN Red List Global Categories and Criteria. Of all 208 Muraenidae species, it was concluded that 86% of species qualified for Least Concern, 13% of species are Data Deficient, and 1% of species qualified for a threatened category. Channomuraena bauchotae is listed as threatened under VU D2 and Gymnothorax parini qualified for VU B2ab(iii). This study will have brought the International Union for the Conservation of Nature one step closer to their goal of conducting Red List assessments of all the world's species(not including microorganisms). Future implications of this study may include future monitoring of key habitat areas and species or conducting further research to gain a more in depth understanding of the life history and threats to Muraenidae.
ContributorsLaurence, Paige Marie (Author) / Polidoro, Beth (Thesis director) / Ralph, Gina (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133149-Thumbnail Image.png
Description
Bats (order Chiroptera) are the longest lived mammals for their size, with particularly extreme longevity evolving in the family Vespertilionidae, or vesper bats. Because of this, researchers have proposed using bats to study ageing and cancer suppression. Here, we study gene duplications across mammalian genomes and show that, similar to

Bats (order Chiroptera) are the longest lived mammals for their size, with particularly extreme longevity evolving in the family Vespertilionidae, or vesper bats. Because of this, researchers have proposed using bats to study ageing and cancer suppression. Here, we study gene duplications across mammalian genomes and show that, similar to previous findings in elephants, bats have experienced duplications of the tumor suppressor gene TP53, including five genomic copies in the genome of the little brown bat (Myotis lucifugus) and two copies in Brandt's bat (Myotis brandtii). These species can live 37 and 41 years, respectively, despite having an adult body mass of only ~7 grams. We use evolutionary genetics and next generation sequencing approaches to show that positive selection has acted on the TP53 locus across bats, and two recently duplicated TP53 gene copies in the little brown bat are both highly conserved and expressed, suggesting they are functional. We also report an extraordinary genomic copy number expansion of the tumor suppressor gene FBXO31 in the common ancestor of vesper bats which accelerated in the Myotis lineage, leading to 34\u201457 copies and the expression of 20 functional FBXO31 homologs in Brandt's bat. As FBXO31 directs the degradation of MDM2, which is a negative regulator of TP53, we suggest that increased expression of both FBXO31 and TP53 may be related to an enhanced DNA-damage response to genotoxic stress brought on by long lifespans and rapid metabolic rates in bats.
ContributorsSchneider-Utaka, Aika Kunigunda (Author) / Maley, Carlo (Thesis director) / Wilson Sayres, Melissa (Committee member) / Tollis, Marc (Committee member) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
Description

Agassiz’s desert tortoise (Gopherus agassizii) is a long-lived species native to the Mojave Desert and is listed as threatened under the US Endangered Species Act. To aid conservation efforts for preserving the genetic diversity of this species, we generated a whole genome reference sequence with an annotation based on dee

Agassiz’s desert tortoise (Gopherus agassizii) is a long-lived species native to the Mojave Desert and is listed as threatened under the US Endangered Species Act. To aid conservation efforts for preserving the genetic diversity of this species, we generated a whole genome reference sequence with an annotation based on deep transcriptome sequences of adult skeletal muscle, lung, brain, and blood. The draft genome assembly for G. agassizii has a scaffold N50 length of 252 kbp and a total length of 2.4 Gbp. Genome annotation reveals 20,172 protein-coding genes in the G. agassizii assembly, and that gene structure is more similar to chicken than other turtles. We provide a series of comparative analyses demonstrating (1) that turtles are among the slowest-evolving genome-enabled reptiles, (2) amino acid changes in genes controlling desert tortoise traits such as shell development, longevity and osmoregulation, and (3) fixed variants across the Gopherus species complex in genes related to desert adaptations, including circadian rhythm and innate immune response. This G. agassizii genome reference and annotation is the first such resource for any tortoise, and will serve as a foundation for future analysis of the genetic basis of adaptations to the desert environment, allow for investigation into genomic factors affecting tortoise health, disease and longevity, and serve as a valuable resource for additional studies in this species complex.

Data Availability: All genomic and transcriptomic sequence files are available from the NIH-NCBI BioProject database (accession numbers PRJNA352725, PRJNA352726, and PRJNA281763). All genome assembly, transcriptome assembly, predicted protein, transcript, genome annotation, repeatmasker, phylogenetic trees, .vcf and GO enrichment files are available on Harvard Dataverse (doi:10.7910/DVN/EH2S9K).

ContributorsTollis, Marc (Author) / DeNardo, Dale F (Author) / Cornelius, John A (Author) / Dolby, Greer A (Author) / Edwards, Taylor (Author) / Henen, Brian T. (Author) / Karl, Alice E. (Author) / Murphy, Robert W. (Author) / Kusumi, Kenro (Author)
Created2017-05-31
158321-Thumbnail Image.png
Description
The Gulf of Mexico (or “Gulf”) is of critical significance to the oil and gas industries’ offshore production, but the potential for accidental petrochemical influx into the Gulf due to such processes is high; two of the largest marine oil spills in history, Pemex's Ixtoc I spill (1979) and British

The Gulf of Mexico (or “Gulf”) is of critical significance to the oil and gas industries’ offshore production, but the potential for accidental petrochemical influx into the Gulf due to such processes is high; two of the largest marine oil spills in history, Pemex's Ixtoc I spill (1979) and British Petroleum's (BP) Deepwater Horizon (2010), have occurred in the region. However, the Gulf is also of critical significance to thousands of unique species, many of which may be irreparably harmed by accidental petrochemical exposure. To better manage the conservation and recovery of marine species in the Gulf ecosystem, a Petrochemical Vulnerability Index was developed to determine the potential impact of a petrochemical influx on Gulf marine fishes, therein providing an objective framework with which to determine the best immediate and long term management strategies for resource managers and decision-makers. The resulting Petrochemical Vulnerability Index (PVI) was developed and applied to all bony fishes and shark/ray species in the Gulf of Mexico (1,670 spp), based on a theoretical petrochemical vulnerability framework developed by peer review. The PVI for fishes embodies three key facets of species vulnerability: likelihood of exposure, individual sensitivity, and population resilience, and comprised of 11 total metrics (Distribution, Longevity, Mobility, Habitat, Pre-Adult Stage Length, Pre-Adult Exposure; Increased Adult Sensitivity Due to UV Light, Increased Pre-Adult Sensitivity Due to UV Light; and Abundance, Reproductive Turnover Rate, Diet/Habitat Specialization). The resulting PVI can be used to guide attention to the species potentially most in need of immediate attention in the event of an oil spill or other petrochemical influx, as well as those species that may require intensive long-term recovery. The scored relative vulnerability rankings can also provide information on species that ought to be the focus of future toxicological research, by indicating which species lack toxicological data, and may potentially experience significant impacts.
ContributorsWoodyard, Megan (Author) / Polidoro, Beth (Thesis advisor) / Saul, Steven (Thesis advisor) / Matson, Cole (Committee member) / Arizona State University (Publisher)
Created2020
158549-Thumbnail Image.png
Description
Plastic pollution has become a global threat to ecosystems worldwide, with microplastics now representing contaminants reported to occur in ambient air, fresh water, seawater, soils, fauna and people. Over time, larger macro-plastics are subject to weathering and fragmentation, resulting in smaller particles, termed ‘microplastics’ (measuring < 5 mm in diameter),

Plastic pollution has become a global threat to ecosystems worldwide, with microplastics now representing contaminants reported to occur in ambient air, fresh water, seawater, soils, fauna and people. Over time, larger macro-plastics are subject to weathering and fragmentation, resulting in smaller particles, termed ‘microplastics’ (measuring < 5 mm in diameter), which have been found to pollute virtually every marine and terrestrial ecosystem on the planet. This thesis explored the transfer of plastic pollutants from consumer products into the built water environment and ultimately into global aquatic and terrestrial ecosystems.

A literature review demonstrated that municipal sewage sludge produced by wastewater treatment plants around the world contains detectable quantities of microplastics. Application of sewage sludge on land was shown to represent a mechanism for transfer of microplastics from wastewater into terrestrial environments, with some countries reporting as high as 113 ± 57 microplastic particles per gram of dry sludge.

To address the notable shortcoming of inconsistent reporting practices for microplastic pollution, this thesis introduced a novel, online calculator that converts the number of plastic particles into the unambiguous metric of mass, thereby making global studies on microplastic pollution directly comparable.

This thesis concludes with an investigation of a previously unexplored and more personal source of plastic pollution, namely the disposal of single-use contact lenses and an assessment of the magnitude of this emerging source of environmental pollution. Using an online survey aimed at quantifying trends with the disposal of lenses in the US, it was discovered that 20 ± 0.8% of contact lens wearers flushed their used lenses down the drain, amounting to 44,000 ± 1,700 kg y-1 of lens dry mass discharged into US wastewater.

From the results it is concluded that conventional and medical microplastics represent a significant global source of pollution and a long-term threat to ecosystems around the world. Recommendations are provided on how to limit the entry of medical microplastics into the built water environment to limit damage to ecosystems worldwide.
ContributorsRolsky, Charles (Author) / Halden, Rolf (Thesis advisor) / Green, Matthew (Committee member) / Neuer, Susanne (Committee member) / Polidoro, Beth (Committee member) / Smith, Andrew (Committee member) / Arizona State University (Publisher)
Created2020
165588-Thumbnail Image.png
Description

This project was an exploratory take on outreach in the life sciences - looking into the existing literature and practices and formulating a proof of concept for future outreach with synthesizes my findings. The research culminated in the creation of an insect guide for the novice observer, which reads as

This project was an exploratory take on outreach in the life sciences - looking into the existing literature and practices and formulating a proof of concept for future outreach with synthesizes my findings. The research culminated in the creation of an insect guide for the novice observer, which reads as a modern take on the dichotomous key and allows amateur insect observers to develop some skills of identification with relatively little entomological knowledge.

ContributorsHaddad, Mary (Author) / Polidoro, Beth (Thesis director) / Yule, Kelsey (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Earth and Space Exploration (Contributor)
Created2022-05