Matching Items (9)
Filtering by

Clear all filters

136419-Thumbnail Image.png
Description
A literature review summarizing the current status of conservation efforts of the Mojave Desert tortoise (Gopherus agassizii) including a brief overview of the Endangered Species Act (ESA) and its applicability to this species' conservation. A genetic and physiological comparison of the morphologically similar Mojave species with the Sonoran (Gopherus morafkai)

A literature review summarizing the current status of conservation efforts of the Mojave Desert tortoise (Gopherus agassizii) including a brief overview of the Endangered Species Act (ESA) and its applicability to this species' conservation. A genetic and physiological comparison of the morphologically similar Mojave species with the Sonoran (Gopherus morafkai) species proceeded by an analysis of if and how the ESA should apply to the Sonoran population. Analysis of current plans and interagency cooperations followed by a multi-step proposal on how best to conserve the Sonoran population of Desert tortoise.
ContributorsKulik, Elise Chikako (Author) / Kusumi, Kenro (Thesis director) / Tollis, Marc (Committee member) / Wilson Sayres, Melissa (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Life Sciences (Contributor)
Created2015-05
132483-Thumbnail Image.png
Description
White-nose syndrome (WNS) is a fungal infection devastating bat populations throughout eastern North America. WNS is caused by a fungus, Pseudogymnoascus destructans (Pd), that invades the skin of hibernating bats. While there are a number of treatments being researched, there is currently no effective treatment for WNS that is deployed

White-nose syndrome (WNS) is a fungal infection devastating bat populations throughout eastern North America. WNS is caused by a fungus, Pseudogymnoascus destructans (Pd), that invades the skin of hibernating bats. While there are a number of treatments being researched, there is currently no effective treatment for WNS that is deployed in the field, except a few being tested on a limited scale. Bats have lowered immune function and response during hibernation, which may increase susceptibility to infection during the winter months. Antimicrobial peptides (AMPs) are a crucial component of the innate immune system and serve as barriers against infection. AMPs are constitutively expressed on skin and facilitate wound healing, stimulate other immune responses, and may also stay active on bat skin during hibernation. AMPs are expressed by all tissues, have direct killing abilities against microbes, and are a potential treatment for bats infected with Pd. In this investigation, the fungicidal activity of several readily available commercial AMPs were compared, and killing assay protocols previously investigated by Frasier and Lake were replicated to establish a control trial for use in future killing assays. Another aim of this investigation was to synthesize a bat-derived AMP for use in the killing assay. Sequences of bat-derived AMPs have been identified in bat skin samples obtained from a large geographic sampling of susceptible and resistant species. Contact was made with GenScript Inc., the company from which commercially available AMPs were purchased, to determine the characteristics of peptide sequences needed to synthesize an AMP for lab use. Based on recommendations from GenScript Inc., peptide sequences need to have a hydrophobicity of less than 50% and a sequence length of less than 50 amino acids. These criteria serve as a potential barrier because none of the known bat-derived sequences analyzed satisfy both of these requirements. The final aim of this study was to generate a conceptual model of the immune response molecules activated when bats are exposed to a fungal pathogen such as Pd. Overall, this work investigated sources of variability between trials of the killing assay, analyzed known bat-derived peptide sequences, and generated a conceptual model that will serve as a guideline for identification of immune response molecules on the skin of bats in future proteomics work.
ContributorsBarton, Madisen L (Author) / Moore, Marianne (Thesis director) / Penton, Christopher (Committee member) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133592-Thumbnail Image.png
Description
White-nose syndrome (WNS) is a fungal disease that infects hibernating bats of multiple species across large portions of eastern North America. To date, WNS has been responsible for the deaths of over seven million bats. It is not yet known why certain species are able to resist infection. Since the

White-nose syndrome (WNS) is a fungal disease that infects hibernating bats of multiple species across large portions of eastern North America. To date, WNS has been responsible for the deaths of over seven million bats. It is not yet known why certain species are able to resist infection. Since the fungus invades the skin and some resistant species show no signs of the characteristic cutaneous lesions, it seems likely that resistant species contain specific defense mechanisms within their skin, such as antimicrobial peptides (AMPs) and other immunologically relevant proteins expressed by specific cell types or as secreted soluble components. Proteomics could be a useful tool for understanding differences in susceptibility, and could help identify AMPs that could be synthesized and used as control agents against the spread of the causative fungus. This study is the first to optimize proteomics methods for bat wing tissues in order to compare the skin proteomes of species variably impacted by WNS, including those of two endangered species. Further tests are planned to investigate methods of increasing protein yield without altering the size of the tissue sample collected, as well as the analysis of mass spectrometry data from processed skin tissues of five bat species differentially affected by WNS.
ContributorsPatrose, Reena Paulene (Author) / Moore, Marianne (Thesis director) / Steele, Kelly (Committee member) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133149-Thumbnail Image.png
Description
Bats (order Chiroptera) are the longest lived mammals for their size, with particularly extreme longevity evolving in the family Vespertilionidae, or vesper bats. Because of this, researchers have proposed using bats to study ageing and cancer suppression. Here, we study gene duplications across mammalian genomes and show that, similar to

Bats (order Chiroptera) are the longest lived mammals for their size, with particularly extreme longevity evolving in the family Vespertilionidae, or vesper bats. Because of this, researchers have proposed using bats to study ageing and cancer suppression. Here, we study gene duplications across mammalian genomes and show that, similar to previous findings in elephants, bats have experienced duplications of the tumor suppressor gene TP53, including five genomic copies in the genome of the little brown bat (Myotis lucifugus) and two copies in Brandt's bat (Myotis brandtii). These species can live 37 and 41 years, respectively, despite having an adult body mass of only ~7 grams. We use evolutionary genetics and next generation sequencing approaches to show that positive selection has acted on the TP53 locus across bats, and two recently duplicated TP53 gene copies in the little brown bat are both highly conserved and expressed, suggesting they are functional. We also report an extraordinary genomic copy number expansion of the tumor suppressor gene FBXO31 in the common ancestor of vesper bats which accelerated in the Myotis lineage, leading to 34\u201457 copies and the expression of 20 functional FBXO31 homologs in Brandt's bat. As FBXO31 directs the degradation of MDM2, which is a negative regulator of TP53, we suggest that increased expression of both FBXO31 and TP53 may be related to an enhanced DNA-damage response to genotoxic stress brought on by long lifespans and rapid metabolic rates in bats.
ContributorsSchneider-Utaka, Aika Kunigunda (Author) / Maley, Carlo (Thesis director) / Wilson Sayres, Melissa (Committee member) / Tollis, Marc (Committee member) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
Description

Agassiz’s desert tortoise (Gopherus agassizii) is a long-lived species native to the Mojave Desert and is listed as threatened under the US Endangered Species Act. To aid conservation efforts for preserving the genetic diversity of this species, we generated a whole genome reference sequence with an annotation based on dee

Agassiz’s desert tortoise (Gopherus agassizii) is a long-lived species native to the Mojave Desert and is listed as threatened under the US Endangered Species Act. To aid conservation efforts for preserving the genetic diversity of this species, we generated a whole genome reference sequence with an annotation based on deep transcriptome sequences of adult skeletal muscle, lung, brain, and blood. The draft genome assembly for G. agassizii has a scaffold N50 length of 252 kbp and a total length of 2.4 Gbp. Genome annotation reveals 20,172 protein-coding genes in the G. agassizii assembly, and that gene structure is more similar to chicken than other turtles. We provide a series of comparative analyses demonstrating (1) that turtles are among the slowest-evolving genome-enabled reptiles, (2) amino acid changes in genes controlling desert tortoise traits such as shell development, longevity and osmoregulation, and (3) fixed variants across the Gopherus species complex in genes related to desert adaptations, including circadian rhythm and innate immune response. This G. agassizii genome reference and annotation is the first such resource for any tortoise, and will serve as a foundation for future analysis of the genetic basis of adaptations to the desert environment, allow for investigation into genomic factors affecting tortoise health, disease and longevity, and serve as a valuable resource for additional studies in this species complex.

Data Availability: All genomic and transcriptomic sequence files are available from the NIH-NCBI BioProject database (accession numbers PRJNA352725, PRJNA352726, and PRJNA281763). All genome assembly, transcriptome assembly, predicted protein, transcript, genome annotation, repeatmasker, phylogenetic trees, .vcf and GO enrichment files are available on Harvard Dataverse (doi:10.7910/DVN/EH2S9K).

ContributorsTollis, Marc (Author) / DeNardo, Dale F (Author) / Cornelius, John A (Author) / Dolby, Greer A (Author) / Edwards, Taylor (Author) / Henen, Brian T. (Author) / Karl, Alice E. (Author) / Murphy, Robert W. (Author) / Kusumi, Kenro (Author)
Created2017-05-31
Description
The use of genetic management in conservation has sparked much debate around the ethical and environmental impacts of the plans. A case study on the conservation of leopard frogs in Arizona was analyzed to better understand the benefits and issues surrounding genetic management plans. The first part of the case

The use of genetic management in conservation has sparked much debate around the ethical and environmental impacts of the plans. A case study on the conservation of leopard frogs in Arizona was analyzed to better understand the benefits and issues surrounding genetic management plans. The first part of the case focuses on the recent management plan for Chiricahua Leopard Frogs implemented by the Arizona Game and Fish Department. The goal of the plan is to better understand the genetic dynamics of the established Chiricahua Leopard Frog populations to develop a more effective management plan. The second part of the case focuses on the Arizona Game and Fish Department’s management of the Northern Leopard Frog. There was little success with the initial breed and release program of the native species, however a nonnative subspecies of Northern Leopard Frog was able to establish a thriving population. This case study exemplifies the many complications with genetic management plans and the importance of careful assessment of options when deciding on a genetic management plan. Despite the complexity of genetic management plans, it is an important method to consider when discussing the conservation of a species.
ContributorsTurpen, Alexa (Author) / Murphree, Julie (Thesis director) / Collins, James (Thesis director) / Owens, Audrey (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / College of Integrative Sciences and Arts (Contributor) / School of Mathematical and Natural Sciences (Contributor)
Created2024-05
Description
The Tale of the Tigers is a children’s picture book in which a tiger named Guava is transported from his world of Serenia to our world. In an attempt to find someone to help him with this situation, Guava meets another tiger named Papaya. After having his prey scared away

The Tale of the Tigers is a children’s picture book in which a tiger named Guava is transported from his world of Serenia to our world. In an attempt to find someone to help him with this situation, Guava meets another tiger named Papaya. After having his prey scared away by Guava, Papaya begins to explain the different hardships and dangers that tigers face in their natural habitat. Papaya also teaches Guava about the different programs and activities that humans have been doing to help increase and restore tiger populations. At the end of the story, Guava returns to his world and spreads awareness to those that live in Serenia about how tigers are threatened in other places and what’s being done to help them. Papaya uses basic ecological concepts to explain the importance of tigers in their ecosystem. These concepts include habitat loss, trophic levels, landscape fragmentation, and poaching. The story also incorporates different conservation methods, including captive breeding and the use of camera traps.
ContributorsMooney, Lena (Author) / Jesse, Lewis (Thesis director) / Meloy, Elizabeth (Committee member) / College of Integrative Sciences and Arts (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131457-Thumbnail Image.png
Description
There is little research on volunteer tourism to primate sanctuaries. The purpose of this study was to help fill this knowledge gap and gain insights into how animal sanctuaries with volunteers in Costa Rica can be improved operationally to strengthen their conservation efforts. My research questions were: 1. How does

There is little research on volunteer tourism to primate sanctuaries. The purpose of this study was to help fill this knowledge gap and gain insights into how animal sanctuaries with volunteers in Costa Rica can be improved operationally to strengthen their conservation efforts. My research questions were: 1. How does volunteer tourism with primates in Costa Rica affect volunteers? 2. How does this volunteer tourism affect Costa Rica’s environment? The methodology used was an exploratory qualitative design that included a literature review of previous research and case studies and a visit with interviews at a primate sanctuary in Costa Rica. The findings did not generate sufficient data to answer the first research question. I did find that altruism was a key factor in recruiting effective volunteers. The study also found that conservation in Costa Rica relies on volunteer tourism to fill a human resource gap. This research will allow sanctuaries in Costa Rica to respond better to protect biodiversity.
ContributorsCavalier, Rebecca (Author) / Chhetri, Nalini (Thesis director) / Castillo, Elizabeth (Committee member) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
Description
Terrestrial hermit crabs serve an incredibly important ecological role in seed dispersal and as decomposers along coastal shorelines. They have also become quite popular in the commercial pet trade, with one species, Coenobita clypeatus, being particularly favored. Typically, these hermit crabs are easily captured and removed from the wild with

Terrestrial hermit crabs serve an incredibly important ecological role in seed dispersal and as decomposers along coastal shorelines. They have also become quite popular in the commercial pet trade, with one species, Coenobita clypeatus, being particularly favored. Typically, these hermit crabs are easily captured and removed from the wild with little protection in their native ranges. In Hermitage Bay, Tobago, there is little information about the population numbers, composition, shell preference, and substrate preference of C. clypeatus in their native habitat. In this study, we estimated population size, gastropod shell preferences, and substrate preference conditions when clustering. We conducted mark re-capture surveys in March, July, and December 2023 and collected morphological data from captured hermit crabs. Our results indicate that the estimated population was highest in July, with the variation being significant when using the Schnabel mark re-capture estimation formula. The most common overall shell type, Columbella mercatoria (West Indian Dove Shell), was prevalent among the smaller sized, younger hermit crabs; while the larger hermit crabs preferred Cittarium pica (West Indian Top Shell). The most preferred substrate for these terrestrial hermit crabs were areas with a mixture of sand and dirt, with high amounts of vegetation and leaf waste and low amounts of human litter. These results suggest a predominantly young population and that beach cleanups should focus on removing human litter entirely, while leaving leaf waste and other fallen logs and branches and not using the collected decomposing plant matter for bonfires. This can help maintain a healthy hermit crab population that continues to benefit the coastlines in Tobago as well as other ecosystems.
ContributorsLindteigen, Amy (Author) / Briggs, Georgette (Thesis director) / Mohammed, Ryan (Committee member) / Barrett, The Honors College (Contributor) / College of Integrative Sciences and Arts (Contributor) / Dean, W.P. Carey School of Business (Contributor)
Created2024-05