Matching Items (9)
Filtering by

Clear all filters

148045-Thumbnail Image.png
Description

As part of Arizona State University’s net-zero carbon initiative, 1000 mesquite trees were planted on a vacant plot of land at West Campus to sequester carbon from the atmosphere. Urban forestry is typically a method of carbon capture in temperate areas, but it is hypothesized that the same principle can

As part of Arizona State University’s net-zero carbon initiative, 1000 mesquite trees were planted on a vacant plot of land at West Campus to sequester carbon from the atmosphere. Urban forestry is typically a method of carbon capture in temperate areas, but it is hypothesized that the same principle can be employed in arid regions as well. To test this hypothesis a carbon model was constructed using the pools and fluxes measured at the Carbon sink and learning forest at West Campus. As an ideal, another carbon model was constructed for the mature mesquite forest at the Hassayampa River Preserve to project how the carbon cycle at West Campus could change over time as the forest matures. The results indicate that the West Campus plot currently functions as a carbon source while the site at the Hassayampa river preserve currently functions as a carbon sink. Soil composition at both sites differ with inorganic carbon contributing to the largest percentage at West Campus, and organic carbon at Hassayampa. Predictive modeling using biomass accumulation estimates and photosynthesis rates for the Carbon Sink Forest at West Campus both predict approximately 290 metric tons of carbon sequestration after 30 years. Modeling net ecosystem exchange predicts that the West Campus plot will begin to act as a carbon sink after 33 years.

ContributorsLiddle, David Mohacsy (Author) / Ball, Becky (Thesis director) / Nishimura, Joel (Committee member) / School of Life Sciences (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
136419-Thumbnail Image.png
Description
A literature review summarizing the current status of conservation efforts of the Mojave Desert tortoise (Gopherus agassizii) including a brief overview of the Endangered Species Act (ESA) and its applicability to this species' conservation. A genetic and physiological comparison of the morphologically similar Mojave species with the Sonoran (Gopherus morafkai)

A literature review summarizing the current status of conservation efforts of the Mojave Desert tortoise (Gopherus agassizii) including a brief overview of the Endangered Species Act (ESA) and its applicability to this species' conservation. A genetic and physiological comparison of the morphologically similar Mojave species with the Sonoran (Gopherus morafkai) species proceeded by an analysis of if and how the ESA should apply to the Sonoran population. Analysis of current plans and interagency cooperations followed by a multi-step proposal on how best to conserve the Sonoran population of Desert tortoise.
ContributorsKulik, Elise Chikako (Author) / Kusumi, Kenro (Thesis director) / Tollis, Marc (Committee member) / Wilson Sayres, Melissa (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Life Sciences (Contributor)
Created2015-05
133149-Thumbnail Image.png
Description
Bats (order Chiroptera) are the longest lived mammals for their size, with particularly extreme longevity evolving in the family Vespertilionidae, or vesper bats. Because of this, researchers have proposed using bats to study ageing and cancer suppression. Here, we study gene duplications across mammalian genomes and show that, similar to

Bats (order Chiroptera) are the longest lived mammals for their size, with particularly extreme longevity evolving in the family Vespertilionidae, or vesper bats. Because of this, researchers have proposed using bats to study ageing and cancer suppression. Here, we study gene duplications across mammalian genomes and show that, similar to previous findings in elephants, bats have experienced duplications of the tumor suppressor gene TP53, including five genomic copies in the genome of the little brown bat (Myotis lucifugus) and two copies in Brandt's bat (Myotis brandtii). These species can live 37 and 41 years, respectively, despite having an adult body mass of only ~7 grams. We use evolutionary genetics and next generation sequencing approaches to show that positive selection has acted on the TP53 locus across bats, and two recently duplicated TP53 gene copies in the little brown bat are both highly conserved and expressed, suggesting they are functional. We also report an extraordinary genomic copy number expansion of the tumor suppressor gene FBXO31 in the common ancestor of vesper bats which accelerated in the Myotis lineage, leading to 34\u201457 copies and the expression of 20 functional FBXO31 homologs in Brandt's bat. As FBXO31 directs the degradation of MDM2, which is a negative regulator of TP53, we suggest that increased expression of both FBXO31 and TP53 may be related to an enhanced DNA-damage response to genotoxic stress brought on by long lifespans and rapid metabolic rates in bats.
ContributorsSchneider-Utaka, Aika Kunigunda (Author) / Maley, Carlo (Thesis director) / Wilson Sayres, Melissa (Committee member) / Tollis, Marc (Committee member) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
163999-Thumbnail Image.png
Description
In the Spring of 2021, I had an internship with Butterfly Wonderland, where I worked in their conservatory and learned about the ecological relationship between butterflies and plants. As part of my internship, I encouraged guests to learn more about gardening for pollinators. That experience inspired me to complete a

In the Spring of 2021, I had an internship with Butterfly Wonderland, where I worked in their conservatory and learned about the ecological relationship between butterflies and plants. As part of my internship, I encouraged guests to learn more about gardening for pollinators. That experience inspired me to complete a creative project in which I would design a butterfly garden of my own that would highlight wildlife benefits and be accessible to people like myself, who do not have their own gardens and don’t have hundreds of dollars to spend on gardening supplies. In collaboration with Dr. Gwen Iacona and Liz Makings (director and second committee member respectively), I planted accessible gardens. By “accessible”, I mean that the gardens were affordable (less than $100 total), included free/upcycled materials wherever possible, and are easily replicable. For my project, I made ‘prototypes’ of the gardens by using freely available seeds and soil sources, germinating those seeds in the ASU Greenhouses, and documenting my process so that it could be shared. Freely available seeds and other materials came from a variety of places including the ASU seed library, local Free Little Libraries, donations, as well as purchases from on campus fundraisers. The germination and growth of seeds in the ASU greenhouse took place over the course of several months in the fall and winter. That documentation has taken on several forms, including an informational pamphlet about wildlife gardening and flyers specific to locally available plant seeds. I find this to be very important because my end goal was to create something that other students or people in our community can use in a practical way. I wanted to create something that will bring gardening into the homes of people who didn’t think they were able to participate in it.
ContributorsBernat, Isabella (Author) / Iacona, Gwen (Thesis director) / Makings, Elizabeth (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Life Sciences (Contributor)
Created2022-05
Description

Prairie dogs were once abundant across the plains and grasslands of the Western half of the United States. Four of the five subspecies are found in the United States and have lost 98% of their historical abundance since 1870 due to extermination campaigns, habitat loss, and plague. This species is

Prairie dogs were once abundant across the plains and grasslands of the Western half of the United States. Four of the five subspecies are found in the United States and have lost 98% of their historical abundance since 1870 due to extermination campaigns, habitat loss, and plague. This species is threatened by extinction and already extirpated across most of its range and yet given very little federal or state protection, except for the Utah prairie dog. This leaves most conservation efforts to grassroots and non-profit conservation organizations. This paper looks at the framework used by conservation organizations within conservation campaigns to communicate the need for prairie dog conservation efforts. Thirty-six organizations were found and six frames were identified. The most common frames emphasized prairie dogs’ role as a keystone species and addressed concerns surrounding cattle ranching and prairie dogs and plague transmission. Other frames were used occasionally and showcase underutilization of a wider variety of targeted frames. This paper is the first of its kind to analyze how prairie dog conservation is being communicated through framing theory. This field is under-researched and has the potential to grow and be helpful to future campaigns as they develop communication strategies and create partnerships with other like-minded organizations.

ContributorsOrtiz, Elizabeth (Author) / Lee, Nicole (Thesis director) / Ball, Becky (Committee member) / Barrett, The Honors College (Contributor) / School of Social and Behavioral Sciences (Contributor) / School of Life Sciences (Contributor)
Created2023-05
Description

The climate conversation is growing more important and necessary than ever. The media has a way of promoting a "doom and gloom" sentiment over conservation efforts and what the public has the power to do in terms of making a change. Now due to the effects of COVID-19 on the

The climate conversation is growing more important and necessary than ever. The media has a way of promoting a "doom and gloom" sentiment over conservation efforts and what the public has the power to do in terms of making a change. Now due to the effects of COVID-19 on the population's attention spans and memories, there is a need for a way to communicate climate science effectively and to encourage those who feel discouraged by climate change to find their inner power. The answer lies in photography. Making science accessible and intriguing through the art of photography is what can get people more interested and empowered to fight against climate change and alter their attitudes towards environmentalism. This thesis explains psychological research and the reasons why people feel helpless in terms of our global future. In then dives into human subjects research conducted on ASU's campus and how the survey results argue in favor of the paper's hypothesis. Additionally, ways to get involved and reasons why we need to remain hopeful are discussed.

ContributorsGorlick, Vanessa (Author) / Hall, Sharon (Thesis director) / Makings, Elizabeth (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / The Sidney Poitier New American Film School (Contributor) / Dean, W.P. Carey School of Business (Contributor)
Created2023-05
191027-Thumbnail Image.png
Description
Understanding the effects of fire on the Sonoran Desert is of critical importance as rising temperatures and changing weather patterns increase the frequency and size of wildfires. Seed banks are an important component in post-fire landscape recovery as the seeds that remain in the soil are an indicator of a

Understanding the effects of fire on the Sonoran Desert is of critical importance as rising temperatures and changing weather patterns increase the frequency and size of wildfires. Seed banks are an important component in post-fire landscape recovery as the seeds that remain in the soil are an indicator of a landscape’s future trajectory. The purpose of this study is to determine the lasting impacts of fire on the soil seed bank of the Sonoran Desert and to identify potential concerns affecting post-fire recovery and restoration. The study site was located in the Arizona Upland division of the Sonoran Desert, Arizona, United States. Soil samples were collected from five burned sites with increasing time since fire, and five nearby unburned sites used as a control. A seedling emergence test was conducted to investigate the density and richness of the seed bank of burned and unburned sites. Seed densities and species richness for sites were calculated using germination results. Findings were analyzed using non-parametric analyses comparing changes in burned and unburned sites over time. Results found that burn status and time since fire had no significant impact on seed density. Graminoid and forb densities were statistically consistent across burn status and time since fire. While species richness was consistent across both plot types, burned samples typically had fewer species than unburned samples. Burned and unburned plots revealed a dominance of annual species with limited presence of woody perennials. While seed densities and species richness are relatively unchanged across burned and unburned sites over time, the lack of woody perennials in the seed bank raises concerns about landscape recovery trajectories in burned sites. These results suggest that restoration efforts focused on maintaining the presence of woody trees and shrubs in the landscape may have the most impact.
ContributorsCountryman, Kristen (Author) / Makings, Elizabeth (Thesis advisor) / Pigg, Kathleen (Thesis advisor) / Lata, Mary (Committee member) / Arizona State University (Publisher)
Created2023
158368-Thumbnail Image.png
Description
Echinomastus erectocentrus (J.M. Coulter) Britton & Rose var. acunensis (W.T. Marshall) Bravo, the Acuña cactus, is a small, single-stemmed spherical cactus with a restricted distribution across the Sonoran Desert in southern Arizona and into northern Sonora, Mexico. Populations of E. erectocentrus var. acunensis are threatened by loss of habitat, climate

Echinomastus erectocentrus (J.M. Coulter) Britton & Rose var. acunensis (W.T. Marshall) Bravo, the Acuña cactus, is a small, single-stemmed spherical cactus with a restricted distribution across the Sonoran Desert in southern Arizona and into northern Sonora, Mexico. Populations of E. erectocentrus var. acunensis are threatened by loss of habitat, climate change, predation, and border related impacts. Due to the severity of these threats and shrinking population sizes, E. erectocentrus var. acunensis was federally listed as endangered by the United States Fish and Wildlife Service in 2013. The varieties of Echinomastus erectocentrus, E. erectocentrus var. acunensis and E. erectocentrus var. erectocentrus (J.M. Coulter) Britton & Rose, share many morphological characteristics that make them difficult to distinguish from one another. Echinomastus johnsonii (Parry ex Engelm.) E.M. Baxter, a presumed closely related species, also has a high level of morphological overlap that further complicates our understanding of species boundaries and detailed morphological data for these three taxa indicate a geographical cline. The goal of this project is to document the genetic diversity within and among populations of E. erectocentrus var. acunensis, and its close relatives E. erectocentrus var. erectocentrus and E. johnsonii. To accomplish this, populations of E. erectocentrus var. acunensis, E. erectocentrus var. erectocentrus, E. johnsonii and the outgroup Echinomastus intertextus (Engelm.) Britton & Rose were sampled. Deoxyribonucleic acid (DNA) was extracted, and data were collected for nine microsatellite regions developed specifically for these taxa, and two microsatellite regions developed for Sclerocactus, a closely related genus. Standard population genetic measures were used to determine genetic variation and structure, and this observed genetic differentiation was then compared to the current morphological understanding of the group. These analyses help improve the knowledge of the genetic structure of E. erectocentrus var. acunensis and inform the understanding of species boundaries and evolutionary relationships within the group by revealing genetic distinctiveness between all four taxa and hybrid populations between the two varieties. This information also reveals patterns of gene flow and population locations that have the highest conservation priority, which can be incorporated into efforts to conserve and protect this endangered species.
ContributorsWillis, Alison (Author) / Wojciechowski, Martin F (Thesis advisor) / Fehlberg, Shannon D (Thesis advisor) / Makings, Elizabeth (Committee member) / Arizona State University (Publisher)
Created2020
Description

Agassiz’s desert tortoise (Gopherus agassizii) is a long-lived species native to the Mojave Desert and is listed as threatened under the US Endangered Species Act. To aid conservation efforts for preserving the genetic diversity of this species, we generated a whole genome reference sequence with an annotation based on dee

Agassiz’s desert tortoise (Gopherus agassizii) is a long-lived species native to the Mojave Desert and is listed as threatened under the US Endangered Species Act. To aid conservation efforts for preserving the genetic diversity of this species, we generated a whole genome reference sequence with an annotation based on deep transcriptome sequences of adult skeletal muscle, lung, brain, and blood. The draft genome assembly for G. agassizii has a scaffold N50 length of 252 kbp and a total length of 2.4 Gbp. Genome annotation reveals 20,172 protein-coding genes in the G. agassizii assembly, and that gene structure is more similar to chicken than other turtles. We provide a series of comparative analyses demonstrating (1) that turtles are among the slowest-evolving genome-enabled reptiles, (2) amino acid changes in genes controlling desert tortoise traits such as shell development, longevity and osmoregulation, and (3) fixed variants across the Gopherus species complex in genes related to desert adaptations, including circadian rhythm and innate immune response. This G. agassizii genome reference and annotation is the first such resource for any tortoise, and will serve as a foundation for future analysis of the genetic basis of adaptations to the desert environment, allow for investigation into genomic factors affecting tortoise health, disease and longevity, and serve as a valuable resource for additional studies in this species complex.

Data Availability: All genomic and transcriptomic sequence files are available from the NIH-NCBI BioProject database (accession numbers PRJNA352725, PRJNA352726, and PRJNA281763). All genome assembly, transcriptome assembly, predicted protein, transcript, genome annotation, repeatmasker, phylogenetic trees, .vcf and GO enrichment files are available on Harvard Dataverse (doi:10.7910/DVN/EH2S9K).

ContributorsTollis, Marc (Author) / DeNardo, Dale F (Author) / Cornelius, John A (Author) / Dolby, Greer A (Author) / Edwards, Taylor (Author) / Henen, Brian T. (Author) / Karl, Alice E. (Author) / Murphy, Robert W. (Author) / Kusumi, Kenro (Author)
Created2017-05-31