Matching Items (2)
Filtering by

Clear all filters

171885-Thumbnail Image.png
Description
Advanced technology has increased access to Antarctica; consequently, there has been an increase in research and tourism. The production of the new technology and the increased number of individuals visiting can increase the presence of persistent organic pollutants and microplastic within Antarctic soil. Studies have focused primarily on identifying these

Advanced technology has increased access to Antarctica; consequently, there has been an increase in research and tourism. The production of the new technology and the increased number of individuals visiting can increase the presence of persistent organic pollutants and microplastic within Antarctic soil. Studies have focused primarily on identifying these pollutants in high human impact areas with perhaps an assumption that low human impact areas would have lower concentrations of pollutants. The object of this paper, therefore, was to test the hypothesis that higher concentrations of persistent organic pollutants and microplastic are found in soils collected near research stations and tourist areas, as opposed to sites that are further from stations and have less direct human impact. Soil samples were collected along a 1,500 km transect of the Scotia Arch and Antarctic Peninsula from three high human impact sites and three low human impact sites to compare the concentration of contaminates identified within the soil. The presence and quantities of microplastic were identified using Nile Red and fluorescence microscopy, while gas chromatography-mass spectrometry was used to detect polychlorinated biphenyls, pesticides, polycyclic aromatic hydrocarbons, n-alkane, and phthalates. Although varying contaminate concentration levels were found at all six sights, counter to the hypothesis, there were no clear patterns of increasing pollutants with increasing human activities. These findings could imply that global sources of pollutants can increase local pollutants indicating the best way to solve any pollution problem is through a global lens.
ContributorsCarroll, Kenneth Charles (Author) / Polidoro, Beth (Thesis advisor) / Kinzig, Ann (Thesis advisor) / Ball, Becky (Committee member) / Arizona State University (Publisher)
Created2022
190767-Thumbnail Image.png
Description
The proliferation of plastic has created a wicked global sustainability challenge. From the extraction of fossil fuels to end-of-life management and pollution, plastic imposes significant negative impacts to human health, economic well-being, and the environment. One proposed solution is to replace conventional plastic with biomass-based plastics and plastic alternatives (BBPAs),

The proliferation of plastic has created a wicked global sustainability challenge. From the extraction of fossil fuels to end-of-life management and pollution, plastic imposes significant negative impacts to human health, economic well-being, and the environment. One proposed solution is to replace conventional plastic with biomass-based plastics and plastic alternatives (BBPAs), such as paper or bio-based plastics. While these products may have advantageous properties, they require biomass as a feedstock. Given the scale of the plastics problem, this biomass demand may be significant. In my dissertation, I evaluate the magnitude of biomass required, and assess the potential impact of this biomass demand on global land use. After examining the scope and the scale of the problem in chapter one, I evaluate the assumptions that have been made regarding the land-use impacts of BBPAs in chapter two. In chapter three, I use a global land-system model (CLUMondo) to evaluate the potential land-use change of large-scale production of BBPAs. In chapter four, I evaluate how certification schemes could be used as a policy tool to mitigate the land-use impacts of bio-based alternatives. I find that the current studies evaluating the land-use impacts of these products make optimistic and unrealistic assumptions regarding land-use. Using a global model, I show how high production scenarios of BBPAs could induce significant land-use change at the global level. Finally, I demonstrate that reliance on certification schemes would likely be insufficient to prevent negative impacts from this scale of land change. Overall, this dissertation suggests that large-scale replacement of plastic with BBPAs could incur significant land-use impacts. Policies designed to mitigate the impacts of plastic need to account for this impact to land-use, lest they risk substituting one global problem for another.
ContributorsHelm, Levi (Author) / Kinzig, Ann (Thesis advisor) / Dooley, Kevin (Committee member) / Turner II, Billie (Committee member) / Verburg, Peter (Committee member) / Arizona State University (Publisher)
Created2023