Matching Items (26)
137081-Thumbnail Image.png
Description
Passive radar can be used to reduce the demand for radio frequency spectrum bandwidth. This paper will explain how a MATLAB simulation tool was developed to analyze the feasibility of using passive radar with digitally modulated communication signals. The first stage of the simulation creates a binary phase-shift keying (BPSK)

Passive radar can be used to reduce the demand for radio frequency spectrum bandwidth. This paper will explain how a MATLAB simulation tool was developed to analyze the feasibility of using passive radar with digitally modulated communication signals. The first stage of the simulation creates a binary phase-shift keying (BPSK) signal, quadrature phase-shift keying (QPSK) signal, or digital terrestrial television (DTTV) signal. A scenario is then created using user defined parameters that simulates reception of the original signal on two different channels, a reference channel and a surveillance channel. The signal on the surveillance channel is delayed and Doppler shifted according to a point target scattering profile. An ambiguity function detector is implemented to identify the time delays and Doppler shifts associated with reflections off of the targets created. The results of an example are included in this report to demonstrate the simulation capabilities.
ContributorsScarborough, Gillian Donnelly (Author) / Cochran, Douglas (Thesis director) / Berisha, Visar (Committee member) / Wang, Chao (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2014-05
132268-Thumbnail Image.png
Description
This research project investigated known and novel differential genetic variants and their associated molecular pathways involved in Type II diabetes mellitus for the purpose of improving diagnosis and treatment methods. The goal of this investigation was to 1) identify the genetic variants and SNPs in Type II diabetes to develo

This research project investigated known and novel differential genetic variants and their associated molecular pathways involved in Type II diabetes mellitus for the purpose of improving diagnosis and treatment methods. The goal of this investigation was to 1) identify the genetic variants and SNPs in Type II diabetes to develop a gene regulatory pathway, and 2) utilize this pathway to determine suitable drug therapeutics for prevention and treatment. Using a Gene Set Enrichment Analysis (GSEA), a set of 1000 gene identifiers from a Mayo Clinic database was analyzed to determine the most significant genetic variants related to insulin signaling pathways involved in Type II Diabetes. The following genes were identified: NRAS, KRAS, PIK3CA, PDE3B, TSC1, AKT3, SOS1, NEU1, PRKAA2, AMPK, and ACC. In an extensive literature review and cross-analysis with Kegg and Reactome pathway databases, novel SNPs located on these gene variants were identified and used to determine suitable drug therapeutics for treatment. Overall, understanding how genetic mutations affect target gene function related to Type II Diabetes disease pathology is crucial to the development of effective diagnosis and treatment. This project provides new insight into the molecular basis of the Type II Diabetes, serving to help untangle the regulatory complexity of the disease and aid in the advancement of diagnosis and treatment. Keywords: Type II Diabetes mellitus, Gene Set Enrichment Analysis, genetic variants, KEGG Insulin Pathway, gene-regulatory pathway
ContributorsBucklin, Lindsay (Co-author) / Davis, Vanessa (Co-author) / Holechek, Susan (Thesis director) / Wang, Junwen (Committee member) / Nyarige, Verah (Committee member) / School of Human Evolution & Social Change (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132756-Thumbnail Image.png
Description
This research project investigated known and novel differential genetic variants and their associated molecular pathways involved in Type II diabetes mellitus for the purpose of improving diagnosis and treatment methods. The goal of this investigation was to 1) identify the genetic variants and SNPs in Type II diabetes to develo

This research project investigated known and novel differential genetic variants and their associated molecular pathways involved in Type II diabetes mellitus for the purpose of improving diagnosis and treatment methods. The goal of this investigation was to 1) identify the genetic variants and SNPs in Type II diabetes to develop a gene regulatory pathway, and 2) utilize this pathway to determine suitable drug therapeutics for prevention and treatment. Using a Gene Set Enrichment Analysis (GSEA), a set of 1000 gene identifiers from a Mayo Clinic database was analyzed to determine the most significant genetic variants related to insulin signaling pathways involved in Type II Diabetes. The following genes were identified: NRAS, KRAS, PIK3CA, PDE3B, TSC1, AKT3, SOS1, NEU1, PRKAA2, AMPK, and ACC. In an extensive literature review and cross-analysis with Kegg and Reactome pathway databases, novel SNPs located on these gene variants were identified and used to determine suitable drug therapeutics for treatment. Overall, understanding how genetic mutations affect target gene function related to Type II Diabetes disease pathology is crucial to the development of effective diagnosis and treatment. This project provides new insight into the molecular basis of the Type II Diabetes, serving to help untangle the regulatory complexity of the disease and aid in the advancement of diagnosis and treatment.
ContributorsDavis, Vanessa Brooke (Co-author) / Bucklin, Lindsay (Co-author) / Holechek, Susan (Thesis director) / Wang, Junwen (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
171597-Thumbnail Image.png
Description
Patterning technologies for micro/nano-structures have been essentially used in a variety of discipline research areas, including electronics, optics, material science, and biotechnology. Therefore their importance has dramatically increased over the past decades. This dissertation presents various advanced patterning processes utilizing cross-discipline technologies, e.g., photochemical deposition, transfer printing (TP), and nanoimprint

Patterning technologies for micro/nano-structures have been essentially used in a variety of discipline research areas, including electronics, optics, material science, and biotechnology. Therefore their importance has dramatically increased over the past decades. This dissertation presents various advanced patterning processes utilizing cross-discipline technologies, e.g., photochemical deposition, transfer printing (TP), and nanoimprint lithography (NIL), to demonstrate inexpensive, high throughput, and scalable manufacturing for advanced optical applications. The polymer-assisted photochemical deposition (PPD) method is employed in the form of additive manufacturing (AM) to print ultra-thin (< 5 nm) and continuous film in micro-scaled (> 6.5 μm) resolution. The PPD film acts as a lossy material in the Fabry-Pérot cavity structures and generates vivid colored images with a micro-scaled resolution by inducing large modulation of reflectance. This PPD-based structural color printing performs without photolithography and vacuum deposition in ambient and room-temperature conditions, which enables an accessible and inexpensive process (Chapter 1). In the TP process, germanium (Ge) is used as the nucleation layer of noble metallic thin films to prevent structural distortion and improve surface morphology. The developed Ge-assisted transfer printing (GTP) demonstrates its feasibility transferring sub-100 nm features with up to 50 nm thickness in a centimeter scale. The GTP is also capable of transferring arbitrary metallic nano-apertures with minimal pattern distortion, providing relatively less expensive, simpler, and scalable manufacturing (Chapter 2). NIL is employed to fabricate the double-layered chiral metasurface for polarimetric imaging applications. The developed NIL process provides multi-functionalities with a single NIL, i.e., spacing layer, planarized surface, and formation of dielectric gratings, respectively, which significantly reduces fabrication processing time and potential cost by eliminating several steps in the conventional fabrication process. During the integration of two metasurfaces, the Moiré fringe based alignment method is employed to accomplish the alignment accuracy of less than 200 nm in both x- and y-directions, which is superior to conventional photolithography. The dramatically improved optical performance, e.g., highly improved circular polarization extinction ratio (CPER), is also achieved with the developed NIL process (Chapter 3).
ContributorsChoi, Shinhyuk (Author) / Wang, Chao (Thesis advisor) / Yu, Hongbin (Committee member) / Holman, Zachary (Committee member) / Hwa, Yoon (Committee member) / Arizona State University (Publisher)
Created2023
171582-Thumbnail Image.png
Description
High throughput transcriptome data analysis like Single-cell Ribonucleic Acid sequencing (scRNA-seq) and Circular Ribonucleic Acid (circRNA) data have made significant breakthroughs, especially in cancer genomics. Analysis of transcriptome time series data is core in identifying time point(s) where drastic changes in gene transcription are associated with homeostatic to non-homeostatic cellular

High throughput transcriptome data analysis like Single-cell Ribonucleic Acid sequencing (scRNA-seq) and Circular Ribonucleic Acid (circRNA) data have made significant breakthroughs, especially in cancer genomics. Analysis of transcriptome time series data is core in identifying time point(s) where drastic changes in gene transcription are associated with homeostatic to non-homeostatic cellular transition (tipping points). In Chapter 2 of this dissertation, I present a novel cell-type specific and co-expression-based tipping point detection method to identify target gene (TG) versus transcription factor (TF) pairs whose differential co-expression across time points drive biological changes in different cell types and the time point when these changes are observed. This method was applied to scRNA-seq data sets from a SARS-CoV-2 study (18 time points), a human cerebellum development study (9 time points), and a lung injury study (18 time points). Similarly, leveraging transcriptome data across treatment time points, I developed methodologies to identify treatment-induced and cell-type specific differentially co-expressed pairs (DCEPs). In part one of Chapter 3, I presented a pipeline that used a series of statistical tests to detect DCEPs. This method was applied to scRNA-seq data of patients with non-small cell lung cancer (NSCLC) sequenced across cancer treatment times. However, this pipeline does not account for correlations among multiple single cells from the same sample and correlations among multiple samples from the same patient. In Part 2 of Chapter 3, I presented a solution to this problem using a mixed-effect model. In Chapter 4, I present a summary of my work that focused on the cross-species analysis of circRNA transcriptome time series data. I compared circRNA profiles in neonatal pig and mouse hearts, identified orthologous circRNAs, and discussed regulation mechanisms of cardiomyocyte proliferation and myocardial regeneration conserved between mouse and pig at different time points.
ContributorsNyarige, Verah Mocheche (Author) / Liu, Li (Thesis advisor) / Wang, Junwen (Thesis advisor) / Dinu, Valentin (Committee member) / Arizona State University (Publisher)
Created2022
171902-Thumbnail Image.png
Description
Beta-Amyloid(Aβ) plaques and tau protein tangles in the brain are now widely recognized as the defining hallmarks of Alzheimer’s disease (AD), followed by structural atrophy detectable on brain magnetic resonance imaging (MRI) scans. However, current methods to detect Aβ/tau pathology are either invasive (lumbar puncture) or quite costly and not

Beta-Amyloid(Aβ) plaques and tau protein tangles in the brain are now widely recognized as the defining hallmarks of Alzheimer’s disease (AD), followed by structural atrophy detectable on brain magnetic resonance imaging (MRI) scans. However, current methods to detect Aβ/tau pathology are either invasive (lumbar puncture) or quite costly and not widely available (positron emission tomography (PET)). And one of the particular neurodegenerative regions is the hippocampus to which the influence of Aβ/tau on has been one of the research projects focuses in the AD pathophysiological progress. In this dissertation, I proposed three novel machine learning and statistical models to examine subtle aspects of the hippocampal morphometry from MRI that are associated with Aβ /tau burden in the brain, measured using PET images. The first model is a novel unsupervised feature reduction model to generate a low-dimensional representation of hippocampal morphometry for each individual subject, which has superior performance in predicting Aβ/tau burden in the brain. The second one is an efficient federated group lasso model to identify the hippocampal subregions where atrophy is strongly associated with abnormal Aβ/Tau. The last one is a federated model for imaging genetics, which can identify genetic and transcriptomic influences on hippocampal morphometry. Finally, I stated the results of these three models that have been published or submitted to peer-reviewed conferences and journals.
ContributorsWu, Jianfeng (Author) / Wang, Yalin (Thesis advisor) / Li, Baoxin (Committee member) / Liang, Jianming (Committee member) / Wang, Junwen (Committee member) / Wu, Teresa (Committee member) / Arizona State University (Publisher)
Created2022
171697-Thumbnail Image.png
Description
This work is aimed at detecting and assessing the performance of colorimetricgold nanoparticle (AuNP) based biosensors, designed to inspect 17-beta-estradiol (E2), SARS-Cov-2 (RBD), and Ebola virus secreted glycoprotein (sGP) with samples at different concentration ranges. The biosensors are able to provide a colorimetric readout, that enables the detection signal to

This work is aimed at detecting and assessing the performance of colorimetricgold nanoparticle (AuNP) based biosensors, designed to inspect 17-beta-estradiol (E2), SARS-Cov-2 (RBD), and Ebola virus secreted glycoprotein (sGP) with samples at different concentration ranges. The biosensors are able to provide a colorimetric readout, that enables the detection signal to be transmitted via a simple glance, which renders these biosensors cheap and rapid therefore enabling for their implementation into point of care (POC) devices for diagnostic testing in harsh /rural environments, where there is a lack of machinery or trained staff to carry out the diagnosis experiments. Or their implementation into POC devices in medical areas for clinical diagnosis. The intent of this research is to detect the targets of interest such as E2 at a lower limit of detection (LOD), and such as RBD using a novel biosensor design. The verification of the colorimetric results is done via transmission spectra recordings and a compilation of the extinction, where an S-curve relative to the detection concentrations can be seen. This research displays, the fabrication of numerous biosensors and using them in detection experiments to hypothesize the performance of detection using target samples. Additionally, this color change is quantifiable by transmission spectrum recordings to compile the data and calculate the extinction S curve. With the least extinction values pertaining to the highest concentration of detection and the highest extinction values is at the lowest concentration of detection.
ContributorsAltarfa, Mohammad F M M (Author) / Wang, Chao (Thesis advisor) / Kozicki, Michael (Committee member) / Sanchez Esqueda, Ivan (Committee member) / Arizona State University (Publisher)
Created2022
171859-Thumbnail Image.png
Description
The development of biosensing platforms not only has an immediate lifesaving effect but also has a significant socio-economic impact. In this dissertation, three very important biomarkers with immense importance were chosen for further investigation, reducing the technological gap and improving their sensing platform.Firstly, gold nanoparticles (AuNP) aggregation and sedimentation-based assays

The development of biosensing platforms not only has an immediate lifesaving effect but also has a significant socio-economic impact. In this dissertation, three very important biomarkers with immense importance were chosen for further investigation, reducing the technological gap and improving their sensing platform.Firstly, gold nanoparticles (AuNP) aggregation and sedimentation-based assays were developed for the sensitive, specific, and rapid detection of Ebola virus secreted glycoprotein (sGP)and severe acute respiratory syndrome coronavirus 2 (SARS-COV2) receptor-binding domain (RBD) antigens. An extensive study was done to develop a complete assay workflow from critical nanobody generation to optimization of AuNP size for rapid detection. A rapid portable electronic reader costing (<$5, <100 cm3), and digital data output was developed. Together with the developed workflow, this portable electronic reader showed a high sensitivity (limit of detection of ~10 pg/mL, or 0.13 pM for sGP and ~40 pg/mL, or ~1.3 pM for RBD in diluted human serum), a high specificity, a large dynamic range (~7 logs), and accelerated readout within minutes. Secondly, A general framework was established for small molecule detection using plasmonic metal nanoparticles through wide-ranging investigation and optimization of assay parameters with demonstrated detection of Cannabidiol (CBD). An unfiltered assay suitable for personalized dosage monitoring was developed and demonstrated. A portable electronic reader demonstrated optoelectronic detection of CBD with a limit of detection (LOD) of <100 pM in urine and saliva, a large dynamic range (5 logs), and a high specificity that differentiates closely related Tetrahydrocannabinol (THC). Finally, with careful biomolecular design and expansion of the portable reader to a dual-wavelength detector the classification of antibodies based on their affinity to SARS-COV2 RBD and their ability to neutralize the RBD from binding to the human Angiotensin-Converting Enzyme 2 (ACE2) was demonstrated with the capability to detect antibody concentration as low as 1 pM and observed neutralization starting as low as 10 pM with different viral load and variant. This portable, low-cost, and versatile readout system holds great promise for rapid, digital, and portable data collection in the field of biosensing.
ContributorsIkbal, Md Ashif (Author) / Wang, Chao (Thesis advisor) / Goryll, Michael (Committee member) / Zhao, Yuji (Committee member) / Wang, Shaopeng (Committee member) / Arizona State University (Publisher)
Created2022
165107-Thumbnail Image.png
Description

The stability of cheerleading stunts is crucial to athlete safety and team success. Consistency in stunt technique contributes to success in stunting skills, giving a team the tools to win competitions. Increased stunt technique reduces the chances of falls and the severity of those falls. Proper technique also prevents injuries

The stability of cheerleading stunts is crucial to athlete safety and team success. Consistency in stunt technique contributes to success in stunting skills, giving a team the tools to win competitions. Increased stunt technique reduces the chances of falls and the severity of those falls. Proper technique also prevents injuries caused by improper positions that place pressure on the lower back and shoulders. Bases must maintain strong technique with proper lines of support in order to maximize stunt stability. Through exploration of the EmbeddedML system, involving a neural network implemented using a SensorTile, cheerleading motions can be successfully classified. Using this system, it is possible to identify motions that result in both weak and injurious positions almost instantly. By alerting athletes to these incorrect motions, improper stunt technique can be corrected quickly and without the involvement of a coach. This automated technique correction would be incredibly beneficial to the sport of competitive cheerleading

ContributorsOspina, Lauren (Author) / Wang, Chao (Thesis director) / Chakrabarti, Chaitali (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2022-05
187464-Thumbnail Image.png
Description
Polarization imaging and polarization microscopy is of great interest in industrial inspection, defense, biomedical and clinical research, food safety, etc. An ideal polarization imaging system suitable for versatile applications should be full-Stokes, compact, broadband, fast, and highly accurate within a large operation angle. However, such a polarization imaging system remains

Polarization imaging and polarization microscopy is of great interest in industrial inspection, defense, biomedical and clinical research, food safety, etc. An ideal polarization imaging system suitable for versatile applications should be full-Stokes, compact, broadband, fast, and highly accurate within a large operation angle. However, such a polarization imaging system remains elusive among state-of-the-art technology. Recently, flat optics based on metasurfaces have been explored for polarization detection and imaging. Compared with state-of-art, metasurface-based solutions have the advantages of compactness, great design flexibility, and feasibility for on-chip integration. This dissertation reports a dual wavelength (630 to 670nm and 480nm to 520nm) chiral metasurfaces featured with sub-wavelength dimension, extinction ratio over 10 across a broad operation bandwidth (175nm) and efficiency over 60%, which can be used for detection and generation of circular polarization (Chapter 2). This dissertation then reports a chip-integrated full-Stokes polarimetric Complementary metal–oxide–semiconductor (CMOS) imaging sensor based on metasurface polarization filter arrays (MPFA) mentioned above. The sensor has high measurement accuracy of polarization states with an angle of view up to 40°. Calibration and characterization of the device are demonstrated, whereby high polarization states measurement accuracy (measurement error <4%) at incidence angle up to ±20° and full Stokes polarization images of polarized objects are shown. (Chapter 3). A scalable fabrication approach based on nano imprint lithography is demonstrated, with improved fabrication efficiency, lower cost, and higher optical performance up to 10 times compared to EBL process. (Chapter 4). Several polarization imaging applications including a dual-camera full-Stokes underwater polarization navigation system are discussed. Polarization mapping under clear sky and clear water is demonstrated for proof concept. Enhancing contrast of objects through turbid water and polarization images of silver dendrites are also discussed (Chapter 5). Though distinctive in its advantages in rich polarization information, most existing Mueller matrix microscope (MMM) operate at single mode, narrow bandwidth with bulky components. This dissertation reports a compact, dual wavelength, dual mode MMM with satisfactory measurement accuracy (Mueller matrix (MM) measurement error≤ 2.1%) using polarimetric imaging sensor mentioned previously, MM imaging of photonic structures, bio-tissues, etc are demonstrated for proof of concept (Chapter 6).
ContributorsZuo, Jiawei (Author) / Yao, Yu (Thesis advisor) / Wang, Chao (Thesis advisor) / Palais, Joseph (Committee member) / Sinha, Kanupriya (Committee member) / Arizona State University (Publisher)
Created2023