Matching Items (48)
152348-Thumbnail Image.png
Description
Pathogenic Gram-negative bacteria employ a variety of molecular mechanisms to combat host defenses. Two-component regulatory systems (TCR systems) are the most ubiquitous signal transduction systems which regulate many genes required for virulence and survival of bacteria. In this study, I analyzed different TCR systems in two clinically-relevant Gram-negative bacteria, i.e.,

Pathogenic Gram-negative bacteria employ a variety of molecular mechanisms to combat host defenses. Two-component regulatory systems (TCR systems) are the most ubiquitous signal transduction systems which regulate many genes required for virulence and survival of bacteria. In this study, I analyzed different TCR systems in two clinically-relevant Gram-negative bacteria, i.e., oral pathogen Porphyromonas gingivalis and enterobacterial Escherichia coli. P. gingivalis is a major causative agent of periodontal disease as well as systemic illnesses, like cardiovascular disease. A microarray study found that the putative PorY-PorX TCR system controls the secretion and maturation of virulence factors, as well as loci involved in the PorSS secretion system, which secretes proteinases, i.e., gingipains, responsible for periodontal disease. Proteomic analysis (SILAC) was used to improve the microarray data, reverse-transcription PCR to verify the proteomic data, and primer extension assay to determine the promoter regions of specific PorX regulated loci. I was able to characterize multiple genetic loci regulated by this TCR system, many of which play an essential role in hemagglutination and host-cell adhesion, and likely contribute to virulence in this bacterium. Enteric Gram-negative bacteria must withstand many host defenses such as digestive enzymes, low pH, and antimicrobial peptides (AMPs). The CpxR-CpxA TCR system of E. coli has been extensively characterized and shown to be required for protection against AMPs. Most recently, this TCR system has been shown to up-regulate the rfe-rff operon which encodes genes involved in the production of enterobacterial common antigen (ECA), and confers protection against a variety of AMPs. In this study, I utilized primer extension and DNase I footprinting to determine how CpxR regulates the ECA operon. My findings suggest that CpxR modulates transcription by directly binding to the rfe promoter. Multiple genetic and biochemical approaches were used to demonstrate that specific TCR systems contribute to regulation of virulence factors and resistance to host defenses in P. gingivalis and E. coli, respectively. Understanding these genetic circuits provides insight into strategies for pathogenesis and resistance to host defenses in Gram negative bacterial pathogens. Finally, these data provide compelling potential molecular targets for therapeutics to treat P. gingivalis and E. coli infections.
ContributorsLeonetti, Cori (Author) / Shi, Yixin (Thesis advisor) / Stout, Valerie (Committee member) / Nickerson, Cheryl (Committee member) / Sandrin, Todd (Committee member) / Arizona State University (Publisher)
Created2013
137404-Thumbnail Image.png
Description
The diagnosis of irritable bowel syndrome (IBS) is currently based on symptomatic criteria that exclude other conditions affecting the gastrointestinal tract, such as celiac disease, food allergies, and infections. The absence of appropriate diagnostic and therapeutic approaches for IBS places a significant burden on the patient and the health care

The diagnosis of irritable bowel syndrome (IBS) is currently based on symptomatic criteria that exclude other conditions affecting the gastrointestinal tract, such as celiac disease, food allergies, and infections. The absence of appropriate diagnostic and therapeutic approaches for IBS places a significant burden on the patient and the health care system due to direct and indirect costs of care. Limitations associated with the application of symptomatic criteria include inappropriate use and/or intrinsic limitations such as the population to which these criteria are applied. The lack of biomarkers specific for IBS, non-specific abdominal symptoms, and considerable variability in the disease course creates additional uncertainty during diagnosis. This project involved screening tissue samples from patients with verified IBS to identify gene expression-based biomarkers associated with IBS. Through validation of microarray gene chip data on the tissue samples using PCR, it was determined that a number of genes within the diseased IBS patient tissue samples were differentially expressed in comparison to the healthy subjects. These findings could potentially lead to the diagnosis of IBS on the basis of a genetic "fingerprint".
ContributorsHockley, Maryam (Author) / Jurutka, Peter (Thesis director) / Sandrin, Todd (Committee member) / Zhang, Lin (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Natural Sciences (Contributor)
Created2013-12
141473-Thumbnail Image.png
Description

Critical flicker fusion thresholds (CFFTs) describe when quick amplitude modulations of a light source become undetectable as the frequency of the modulation increases and are thought to underlie a number of visual processing skills, including reading. Here, we compare the impact of two vision-training approaches, one involving contrast sensitivity training

Critical flicker fusion thresholds (CFFTs) describe when quick amplitude modulations of a light source become undetectable as the frequency of the modulation increases and are thought to underlie a number of visual processing skills, including reading. Here, we compare the impact of two vision-training approaches, one involving contrast sensitivity training and the other directional dot-motion training, compared to an active control group trained on Sudoku. The three training paradigms were compared on their effectiveness for altering CFFT. Directional dot-motion and contrast sensitivity training resulted in significant improvement in CFFT, while the Sudoku group did not yield significant improvement. This finding indicates that dot-motion and contrast sensitivity training similarly transfer to effect changes in CFFT. The results, combined with prior research linking CFFT to high-order cognitive processes such as reading ability, and studies showing positive impact of both dot-motion and contrast sensitivity training in reading, provide a possible mechanistic link of how these different training approaches impact reading abilities.

ContributorsZhou, Tianyou (Author) / Nanez, Jose (Author) / Zimmerman, Daniel (Author) / Holloway, Steven (Author) / Seitz, Aaron (Author) / New College of Interdisciplinary Arts and Sciences (Contributor)
Created2016-10-26
141474-Thumbnail Image.png
Description

Although autism spectrum disorder (ASD) is a serious lifelong condition, its underlying neural mechanism remains unclear. Recently, neuroimaging-based classifiers for ASD and typically developed (TD) individuals were developed to identify the abnormality of functional connections (FCs). Due to over-fitting and interferential effects of varying measurement conditions and demographic distributions, no

Although autism spectrum disorder (ASD) is a serious lifelong condition, its underlying neural mechanism remains unclear. Recently, neuroimaging-based classifiers for ASD and typically developed (TD) individuals were developed to identify the abnormality of functional connections (FCs). Due to over-fitting and interferential effects of varying measurement conditions and demographic distributions, no classifiers have been strictly validated for independent cohorts. Here we overcome these difficulties by developing a novel machine-learning algorithm that identifies a small number of FCs that separates ASD versus TD. The classifier achieves high accuracy for a Japanese discovery cohort and demonstrates a remarkable degree of generalization for two independent validation cohorts in the USA and Japan. The developed ASD classifier does not distinguish individuals with major depressive disorder and attention-deficit hyperactivity disorder from their controls but moderately distinguishes patients with schizophrenia from their controls. The results leave open the viable possibility of exploring neuroimaging-based dimensions quantifying the multiple-disorder spectrum.

ContributorsYahata, Noriaki (Author) / Morimoto, Jun (Author) / Hashimoto, Ryuichiro (Author) / Lisi, Giuseppe (Author) / Shibata, Kazuhisa (Author) / Kawakubo, Yuki (Author) / Kuwabara, Hitoshi (Author) / Kuroda, Miho (Author) / Yamada, Takashi (Author) / Megumi, Fukuda (Author) / Imamizu, Hiroshi (Author) / Nanez, Jose (Author) / Takahashi, Hidehiko (Author) / Okamoto, Yasumasa (Author) / Kasai, Kiyoto (Author) / Kato, Nobumasa (Author) / Sasaki, Yuka (Author) / Watanabe, Takeo (Author) / Kawato, Mitsuo (Author) / New College of Interdisciplinary Arts and Sciences (Contributor)
Created2016-04-14
134109-Thumbnail Image.png
Description
Irritable bowel syndrome (IBS) is a common gastrointestinal disorder that afflicts more than 20% of the population in the United States. Symptoms include mild to severe abdominal discomfort accompanied by a change in stool character and form ranging from constipation to diarrhea. Additionally, IBS is associated with secondary effects including

Irritable bowel syndrome (IBS) is a common gastrointestinal disorder that afflicts more than 20% of the population in the United States. Symptoms include mild to severe abdominal discomfort accompanied by a change in stool character and form ranging from constipation to diarrhea. Additionally, IBS is associated with secondary effects including depression, anxiety, poor quality of life, insomnia and sexual dysfunction. Despite the known association of secondary effects, patients are often tested for potential illnesses that share similar pathological symptoms. This process can be costly and protracted and yet not deliver a completely accurate diagnosis. The aim of this research is to identify gene expression-based biological signatures and unique biomarkers for the detection of IBS. Through the use of quantitative polymerase chain reaction (qPCR), comparison of pooled samples of non-IBS patient-derived RNA were used to identify differentially expressed genes in patients with IBS. Data obtained from preliminary DNA microarray analysis demonstrated a degree of success in differentiating between IBS and asymptomatic patients. Additional comprehensive DNA microarray analyses have led to the identification of a series of 858 differentially expressed genes, including genes associated with serotonin metabolism, which may characterize the IBS pathological state. The microarray results were screened using a combination of gene ontological analysis and qPCR. Real-time PCR revealed repressed levels of tryptophan hydroxylase (TPH1), an enzyme involved in the rate- limiting step in serotonin biosynthesis, in IBS patients relative to controls. Lower concentrations of serum 25(OH)D were also observed among the IBS cohort relative to asymptomatic patients, especially among IBS-D subtype. Vitamin D was shown to modulate differentially expressed genes in IBS patients, suggesting that IBS pathophysiology may involve vitamin D insufficiency and/or an irregularity in serotonin metabolism. Additional qPCR analysis of 32 differentially expressed genes in IBS patients identified 7 putative genetic biomarkers proposed for a potential IBS diagnostic panel. Based on the quality of these results, we may be able to develop, test, and market a diagnostic kit for IBS.
ContributorsGrozic, Aleksandra (Author) / Jurutka, Peter (Thesis director) / Sandrin, Todd (Committee member) / Foxx-Orenstein, Amy (Committee member) / School of Mathematical and Natural Sciences (Contributor) / School of Social and Behavioral Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
135467-Thumbnail Image.png
Description
Proper developmental fidelity ensures uninterrupted progression towards sexual maturity and species longevity. However, early development, the time-frame spanning infancy through adolescence, is a fragile state since organisms have limited mobility and responsiveness towards their environment. Previous studies have shown that damage during development leads to an onset of developmental delay

Proper developmental fidelity ensures uninterrupted progression towards sexual maturity and species longevity. However, early development, the time-frame spanning infancy through adolescence, is a fragile state since organisms have limited mobility and responsiveness towards their environment. Previous studies have shown that damage during development leads to an onset of developmental delay which is proportional to the extent of damage accrued by the organism. In contrast, damage sustained in older organisms does not delay development in response to tissue damage. In the fruit fly, Drosophila melanogaster, damage to wing precursor tissues is associated with developmental retardation if damage is sustained in young larvae. No developmental delay is observed when damage is inflicted closer to pupariation time. Here we use microarray analysis to characterize the genomic response to injury in Drosophila melanogaster in young and old larvae. We also begin to develop tools to examine in more detail, the role that the neurotransmitter dopamine might play in mediating injury-induced developmental delays.
ContributorsContreras Rodriguez, Jesus (Co-author) / Lupone, Teresa (Co-author) / Beckett, Chaz (Co-author) / Almajan, Ashley (Co-author) / Leek, Ty (Co-author) / Hussain, Sabahat (Co-author) / Marsh, Tyler (Co-author) / Broatch, Jennifer (Co-author) / Hackney Price, Jennifer (Thesis director) / Sandrin, Todd (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
134184-Thumbnail Image.png
Description
Historically, Supreme Court interpretations of the Constitution of the United States have been significantly important, impacting the lives of every American. This honors thesis seeks to understand the ways in which the Constitution has been interpreted through the lens of political ideology. Using constitutional theory, I explain how the political

Historically, Supreme Court interpretations of the Constitution of the United States have been significantly important, impacting the lives of every American. This honors thesis seeks to understand the ways in which the Constitution has been interpreted through the lens of political ideology. Using constitutional theory, I explain how the political ideologies of classical liberalism, conservatism, libertarianism, and progressive liberalism have played a role in the interpretations of the First, Second, and Fourth Amendments. I also examine how these ideological interpretations have changed from 1776 to 2017, dividing the history of the United States into four eras: the Founding Era, the Civil War Era, the New Deal Era, and the Modern Era. First, the First Amendment's clauses on religion are examined, where I focus on the separation between church and state as well as the concepts of "establishment" and "free exercise." The First Amendment transitions from classically liberal, to conservative, to progressively liberal and classically liberal, to progressively liberal and libertarian. Next, we look at the Second Amendment's notions of a "militia" and the "right to keep and bear arms." The Second Amendment's interpretations begin classically liberal, then change to classically liberal and progressively liberal, to progressively liberal, to conservative. Finally, the analysis on the Fourth Amendment's "unreasonable searches and seizures" as well as "warrants" lends evidence to ideological interpretations. The Fourth Amendment, like the other two, starts classically liberal for two eras, then becomes libertarian, and finally ends libertarian and conservative. The implications of each of these conclusions are then discussed, with emphasis on public opinion in society during the era in question, the ways in which the ideologies in each era seem to build upon one another, the ideologies of the justices who wrote the opinions, and the ideology of the court.
Created2017-12
Description
With increasing urbanization, organisms face a myriad of novel ecological challenges. While the eco-evolutionary dynamics of urbanization are currently receiving a great deal of attention, the effect of urban disturbance on the microbiome of urban organisms is relatively unstudied. Indeed, studies of the microbiome may illuminate the mechanisms by which

With increasing urbanization, organisms face a myriad of novel ecological challenges. While the eco-evolutionary dynamics of urbanization are currently receiving a great deal of attention, the effect of urban disturbance on the microbiome of urban organisms is relatively unstudied. Indeed, studies of the microbiome may illuminate the mechanisms by which some species thrive after urbanization (pest implications), while other species go locally extinct (biodiversity implications). We investigated the gut microbiome of the Western black widow spider (Latrodectus hesperus). L. hesperus is an ideal model system as they are a pest species of medical importance in urban ecosystems, often forming dense urban infestations relative to the sparse populations found in their native Sonoran Desert. To gain insight into the composition of the microbiome in L. hesperus and its potential function, we sampled 4 urban, 4 desert, and 2 laboratory-reared spiders, and high-throughput sequencing of the 16S rRNA V4 region was used to investigate the diversity of gut microbiota. Dominant bacterial phyla across all samples were Firmicutes, Proteobacteria, and Actinobacteria. While desert widows showed more gut microbial diversity than urban widows, the difference was not statistically significant. The relative abundance of taxonomic classes Blastocatellia, Acidobacteriia, and Thermoleophilia detected in desert spiders was especially higher than those in urban and laboratory-reared spiders. However, urban spiders had a higher relative abundance of taxonomic class Actinomycetia. Differences in widow gut microbiome diversity improves our understanding of how features unique to a habitat, like prey diversity and soil microbes, may be shaping their microbiome. Additionally, this work further highlights the impact urbanization has on biodiversity loss, which indirectly develops a new biomarker for differentiating between urban and desert black widow spiders based on their gut microbiome.
ContributorsAsrari, Hasti (Author) / Johnson, Chad (Thesis director) / Sandrin, Todd (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Natural Sciences (Contributor) / School of Life Sciences (Contributor)
Created2022-12
157426-Thumbnail Image.png
Description
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, is the 10th leading cause of death, worldwide. The prevalence of drug-resistant clinical isolates and the paucity of newly-approved antituberculosis drugs impedes the successful eradication of Mtb. Bacteria commonly use two-component systems (TCS) to sense their environment and genetically modulate adaptive responses.

Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, is the 10th leading cause of death, worldwide. The prevalence of drug-resistant clinical isolates and the paucity of newly-approved antituberculosis drugs impedes the successful eradication of Mtb. Bacteria commonly use two-component systems (TCS) to sense their environment and genetically modulate adaptive responses. The prrAB TCS is essential in Mtb, thus representing an auspicious drug target; however, the inability to generate an Mtb ΔprrAB mutant complicates investigating how this TCS contributes to pathogenesis. Mycobacterium smegmatis, a commonly used M. tuberculosis genetic surrogate was used here. This work shows that prrAB is not essential in M. smegmatis. During ammonium stress, the ΔprrAB mutant excessively accumulates triacylglycerol lipids, a phenotype associated with M. tuberculosis dormancy and chronic infection. Additionally, triacylglycerol biosynthetic genes were induced in the ΔprrAB mutant relative to the wild-type and complementation strains during ammonium stress. Next, RNA-seq was used to define the M. smegmatis PrrAB regulon. PrrAB regulates genes participating in respiration, metabolism, redox balance, and oxidative phosphorylation. The M. smegmatis ΔprrAB mutant is compromised for growth under hypoxia, is hypersensitive to cyanide, and fails to induce high-affinity respiratory genes during hypoxia. Furthermore, PrrAB positively regulates the hypoxia-responsive dosR TCS response regulator, potentially explaining the hypoxia-mediated growth defects in the ΔprrAB mutant. Despite inducing genes encoding the F1F0 ATP synthase, the ΔprrAB mutant accumulates significantly less ATP during aerobic, exponential growth compared to the wild-type and complementation strains. Finally, the M. smegmatis ΔprrAB mutant exhibited growth impairment in media containing gluconeogenic carbon sources. M. tuberculosis mutants unable to utilize these substrates fail to establish chronic infection, suggesting that PrrAB may regulate Mtb central carbon metabolism in response to chronic infection. In conclusion, 1) prrAB is not universally essential in mycobacteria; 2) M. smegmatis PrrAB regulates genetic responsiveness to nutrient and oxygen stress; and 3) PrrAB may provide feed-forward control of the DosRS TCS and dormancy phenotypes. The data generated in these studies provide insight into the mycobacterial PrrAB TCS transcriptional regulon, PrrAB essentiality in Mtb, and how PrrAB may mediate stresses encountered by Mtb during the transition to chronic infection.
ContributorsMaarsingh, Jason (Author) / Haydel, Shelley E (Thesis advisor) / Roland, Kenneth (Committee member) / Sandrin, Todd (Committee member) / Bean, Heather (Committee member) / Arizona State University (Publisher)
Created2019
154645-Thumbnail Image.png
Description
The ability of microalgae to be mass cultivated and harvested for production of pharmaceuticals, nutraceuticals, and biofuels has made microalgae a focal point of scientific investigation. However, negative impacts on production are essentially inevitable due to the open design of many microalgae mass culture systems. This challenge generates

The ability of microalgae to be mass cultivated and harvested for production of pharmaceuticals, nutraceuticals, and biofuels has made microalgae a focal point of scientific investigation. However, negative impacts on production are essentially inevitable due to the open design of many microalgae mass culture systems. This challenge generates a need for the consistent monitoring of microalgae cultures for health and the presence of contaminants, predators, and competitors. The techniques for monitoring microalgae cultures are generally time-intensive, labor-intensive, and expensive. The scope of this work was to evaluate the use of Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) as a viable alternative for the characterization of microalgae cultures. The studies presented here evaluated whether MALDI-TOF MS can be used to: 1) differentiate microalgae at the species and strain levels, 2) characterize simple mixtures of microalgae, 3) detect changes in a single microalgae culture over time, and 4) characterize growth phases of microalgae cultures. This research required the development of a MALDI-TOF MS microalgae analysis protocol for organism characterization. The results yielded in this research showed that MALDI-TOF MS was just as accurate, if not more so, than molecular techniques for the identification of microalgae at the species and strain levels during its logarithmic growth phase. Additionally, results suggest that MALDI-TOF MS is sensitive enough to characterize simple mixtures and detect changes in cultures over time. The data presented here suggests the next logical step is the development of protocols for the near-real time health monitoring of microalgae cultures and detection of contaminants using MALDI-TOF MS.
ContributorsBarbano, Duane (Author) / Sandrin, Todd (Thesis advisor) / Webber, Andrew (Committee member) / Dempster, Thomas (Committee member) / Arizona State University (Publisher)
Created2016