Matching Items (60)
151490-Thumbnail Image.png
Description
Public Private Partnerships (PPP) have been in use for years in the United Kingdom, Europe, Australia and for a shorter time here in the United States. Typical PPP infrastructure projects include a multi-year term of operation in addition to constructing the structural features to be used. Early studies are proving

Public Private Partnerships (PPP) have been in use for years in the United Kingdom, Europe, Australia and for a shorter time here in the United States. Typical PPP infrastructure projects include a multi-year term of operation in addition to constructing the structural features to be used. Early studies are proving PPP delivery methods to be effective at construction cost containment. An examination of the key elements that constitute the early stage negotiation reveal that there is room for negotiation created by the governing documentation while maintaining a competitive environment that brings the best value available to the Public entity. This paper will examine why PPP's are effective during this critical construction period of the facilities life cycle. It is the intent of this study to examine why the features and outcomes of more or less negotiation and the degree of rigor associated with it.
ContributorsMaddex, William E (Author) / Chasey, Allan (Thesis advisor) / El Asmar, Mounir (Committee member) / Pendyala, Ram (Committee member) / Arizona State University (Publisher)
Created2012
137439-Thumbnail Image.png
Description
Bangladesh is facing one of the largest mass poisonings in human history with over 77 million people affected by contaminated water each and every day. Over the last few years, the 33 Buckets team has come together to help fulfill this clean water need through filtration, education, and an innovative

Bangladesh is facing one of the largest mass poisonings in human history with over 77 million people affected by contaminated water each and every day. Over the last few years, the 33 Buckets team has come together to help fulfill this clean water need through filtration, education, and an innovative distribution system to inspire and empower people in Bangladesh and across the world. To start this process, we are working with the Rahima Hoque Girls' school in the rural area of Raipura, Bangladesh to give girls access to clean water where they spend the most time. Through our assessment trip in May 2012, we were able to acquire technical data, community input, and partnerships necessary to move our project forward. Additionally, we realized that in many cases, including the Rahima Hoque school, water problems are not caused by a lack of technology, but rather a lack of utilization and maintenance long-term. To remedy this, 33 Buckets has identified a local filter to have installed at the school, and has designed a small-scale business focused on selling clean water in bulk to the surrounding community. Our price point and association with the Rahima Hoque Girls' school makes our solution sustainable. Plus, with the success of our first site, we see the potential to scale. We already have five nearby schools interested in working to implement similar water projects, and with over 100,000 schools in Bangladesh, many of which lack access to the right water systems, we have a huge opportunity to impact millions of lives. This thesis project describes our journey through this process. First, an introduction to our work prior to the assessment trip and through the ASU EPICS program is given. Second, we include quantitative and qualitative details regarding our May 2012 assessment trip to the Rahima Hoque school and Dhaka. Third, we recount some of the experiences we were able to participate in following the trip to Bangladesh, including the Dell Social Innovation Challenge. Fourth, we examine the technical filtration methods, business model development, and educational materials that will be used to implement our solution this summer. Finally, we include an Appendix with a variety of social venture competitions and applications that we have submitted over the past two years, in addition to other supplementary materials. These are excellent examples of our diligence and provide unique insight into the growth of our project.
ContributorsStrong, Paul Andrew (Co-author) / Shah, Pankti (Co-author) / Huerta, Mark (Co-author) / Henderson, Mark (Thesis director) / El Asmar, Mounir (Committee member) / LaBelle, Jeffrey (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2013-05
132998-Thumbnail Image.png
Description
The research analyzes the transformation of wasted thermal energy into a usable form through thermogalvanic devices. This technology helps mitigate international growing energy demands. Building energy efficiency is a critical research topic, since the loads account for 40% of all energy demand in developed nations, and 30% in less developed

The research analyzes the transformation of wasted thermal energy into a usable form through thermogalvanic devices. This technology helps mitigate international growing energy demands. Building energy efficiency is a critical research topic, since the loads account for 40% of all energy demand in developed nations, and 30% in less developed nations. A significant portion of the energy consumed for heating and cooling, where a majority is dissipated to the ambient as waste heat. This research answers how much power output (µW·cm-2) can the thermogalvanic brick experimentally produce from an induced temperature gradient? While there are multiple avenues for the initial and optimized prototype design, one key area of interest relating to thermogalvanic devices is the effective surface area of the electrodes. This report highlights the experimental power output measurements of a Cu/Cu2+ thermogalvanic brick by manipulating the effective surface area of the electrodes. Across three meshes, the maximum power output normalized for temperature was found to be between 2.13-2.87 x 10-3 μWcm-2K-2. The highest normalized power output corresponded to the mesh with the highest effective surface area, which was classified as the fine mesh. This intuitively aligned with the theoretical understanding of surface area and maximum power output, where decreasing the activation resistance also reduces the internal resistance, which increases the theoretical maximum power.
ContributorsKiracofe, Ryan Moore (Author) / Phelan, Patrick (Thesis director) / El Asmar, Mounir (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
134875-Thumbnail Image.png
Description
Productivity in the construction industry is an essential measure of production efficiency and economic progress, quantified by craft laborers' time spent directly adding value to a project. In order to better understand craft labor productivity as an aspect of lean construction, an activity analysis was conducted at the Arizona State

Productivity in the construction industry is an essential measure of production efficiency and economic progress, quantified by craft laborers' time spent directly adding value to a project. In order to better understand craft labor productivity as an aspect of lean construction, an activity analysis was conducted at the Arizona State University Palo Verde Main engineering dormitory construction site in December of 2016. The objective of this analysis on craft labor productivity in construction projects was to gather data regarding the efficiency of craft labor workers, make conclusions about the effects of time of day and other site-specific factors on labor productivity, as well as suggest improvements to implement in the construction process. Analysis suggests that supporting tasks, such as traveling or materials handling, constitute the majority of craft labors' efforts on the job site with the highest percentages occurring at the beginning and end of the work day. Direct work and delays were approximately equal at about 20% each hour with the highest peak occurring at lunchtime between 10:00 am and 11:00 am. The top suggestion to improve construction productivity would be to perform an extensive site utilization analysis due to the confined nature of this job site. Despite the limitations of an activity analysis to provide a complete prospective of all the factors that can affect craft labor productivity as well as the small number of days of data acquisition, this analysis provides a basic overview of the productivity at the Palo Verde Main construction site. Through this research, construction managers can more effectively generate site plans and schedules to increase labor productivity.
ContributorsFord, Emily Lucile (Author) / Grau, David (Thesis director) / Chong, Oswald (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134662-Thumbnail Image.png
Description
The overall energy consumption around the United States has not been reduced even with the advancement of technology over the past decades. Deficiencies exist between design and actual energy performances. Energy Infrastructure Systems (EIS) are impacted when the amount of energy production cannot be accurately and efficiently forecasted. Inaccurate engineering

The overall energy consumption around the United States has not been reduced even with the advancement of technology over the past decades. Deficiencies exist between design and actual energy performances. Energy Infrastructure Systems (EIS) are impacted when the amount of energy production cannot be accurately and efficiently forecasted. Inaccurate engineering assumptions can result when there is a lack of understanding on how energy systems can operate in real-world applications. Energy systems are complex, which results in unknown system behaviors, due to an unknown structural system model. Currently, there exists a lack of data mining techniques in reverse engineering, which are needed to develop efficient structural system models. In this project, a new type of reverse engineering algorithm has been applied to a year's worth of energy data collected from an ASU research building called MacroTechnology Works, to identify the structural system model. Developing and understanding structural system models is the first step in creating accurate predictive analytics for energy production. The associative network of the building's data will be highlighted to accurately depict the structural model. This structural model will enhance energy infrastructure systems' energy efficiency, reduce energy waste, and narrow the gaps between energy infrastructure design, planning, operation and management (DPOM).
ContributorsCamarena, Raquel Jimenez (Author) / Chong, Oswald (Thesis director) / Ye, Nong (Committee member) / Industrial, Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135209-Thumbnail Image.png
Description
Building construction, design and maintenance is a sector of engineering where improved efficiency will have immense impacts on resource consumption and environmental health. This research closely examines the Leadership in Environment and Energy Design (LEED) rating system and the International Green Construction Code (IgCC). The IgCC is a model code,

Building construction, design and maintenance is a sector of engineering where improved efficiency will have immense impacts on resource consumption and environmental health. This research closely examines the Leadership in Environment and Energy Design (LEED) rating system and the International Green Construction Code (IgCC). The IgCC is a model code, written with the same structure as many building codes. It is a standard that can be enforced if a city's government decides to adopt it. When IgCC is enforced, the buildings either meet all of the requirements set forth in the document or it fails to meet the code standards. The LEED Rating System, on the other hand, is not a building code. LEED certified buildings are built according to the standards of their local jurisdiction and in addition to that, building owners can chose to pursue a LEED certification. This is a rating system that awards points based on the sustainable measures achieved by a building. A comparison of these green building systems highlights their accomplishments in terms of reduced electricity usage, usage of low-impact materials, indoor environmental quality and other innovative features. It was determined that in general IgCC is more holistic, stringent approach to green building. At the same time the LEED rating system a wider variety of green building options. In addition, building data from LEED certified buildings was complied and analyzed to understand important trends. Both of these methods are progressing towards low-impact, efficient infrastructure and a side-by-side comparison, as done in this research, shed light on the strengths and weaknesses of each method, allowing for future improvements.
ContributorsCampbell, Kaleigh Ruth (Author) / Chong, Oswald (Thesis director) / Parrish, Kristen (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
133914-Thumbnail Image.png
Description
This paper describes the research done to quantify the relationship between external air temperature and energy consumption and internal air temperature and energy consumption. The study was conducted on a LEED Gold certified building, College Avenue Commons, located on Arizona State University's Tempe campus. It includes information on the background

This paper describes the research done to quantify the relationship between external air temperature and energy consumption and internal air temperature and energy consumption. The study was conducted on a LEED Gold certified building, College Avenue Commons, located on Arizona State University's Tempe campus. It includes information on the background of previous studies in the area, some that agree with the research hypotheses and some that take a different path. Real-time data was collected hourly for energy consumption and external air temperature. Intermittent internal air temperature was collected by undergraduate researcher, Charles Banke. Regression analysis was used to prove two research hypotheses. The authors found no correlation between external air temperature and energy consumption, nor did they find a relationship between internal air temperature and energy consumption. This paper also includes recommendations for future work to improve the study.
ContributorsBanke, Charles Michael (Author) / Chong, Oswald (Thesis director) / Parrish, Kristen (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
158113-Thumbnail Image.png
Description
The Chinese Construction Industry has grown to be one of the largest construction markets in the world within the last 10 years. The size of the Chinese Construction Industry is on par with many developed nations, despite it being a developing country. Despite its rapid growth, the productivity and profitability

The Chinese Construction Industry has grown to be one of the largest construction markets in the world within the last 10 years. The size of the Chinese Construction Industry is on par with many developed nations, despite it being a developing country. Despite its rapid growth, the productivity and profitability of the Chinese Construction Industry is low compared to similar sized construction industries (United States, United Kingdom, etc.). In addition to the low efficiency of the Chinese Construction Industry, there is minimal documentation available showing the performance of the Chinese Construction Industry (projects completed on time, on budget, and customer satisfaction ratings).

The purpose of this research is to investigate potential solutions that could address the poor efficiency and performance of the Chinese Construction Industry. This research is divided into three phases; first, a literature review to identify countries that have similar construction industries to the Chinese Construction Industry. The second phase is to compare the risks and identify solutions that are proposed to increase the performance of similar construction industries and the Chinese Construction Industry. The third phase is to create a survey from the literature-based information to validate the concepts with the Chinese Construction Industry professionals and stakeholders.
ContributorsChen, Yutian (Author) / Chong, Oswald (Thesis advisor) / Kashiwagi, Dean T. (Committee member) / Badger, Willliam (Committee member) / Arizona State University (Publisher)
Created2020
171452-Thumbnail Image.png
Description
In a world where everything is drifting away from the intellectual into materialistic, and where everyone is rushing on the daily basis to provide their basic needs, everything is getting more expensive except the human life’s worth. Construction sites can be some of the clearer examples that show how the

In a world where everything is drifting away from the intellectual into materialistic, and where everyone is rushing on the daily basis to provide their basic needs, everything is getting more expensive except the human life’s worth. Construction sites can be some of the clearer examples that show how the technical work, the communication skills, team work and management relate to one another. However, lately, the safety of the labor is neither being prioritized nor considered an important aspect to even consider at sites. Lebanon is, unfortunately, one of the countries where most construction sites are aimed to increase production and decrease cost as much as possible, on behalf of labor safety measurements. The high occurrence of such cases are the result of the lack of government control and accountability, as well as other reasonings. Similar to the majority of countries, falls are the number one cause of fatalities and serious injuries on construction sites, especially building sites, where working on higher elevations is a must. This thesis focuses on the topic of “Techniques and technologies for reducing fall hazards in use on Lebanese building construction projects”. The main goal behind it is to shed light on whether there are any traditional, technical or modern mechanisms used for safety on the Lebanese construction sites, however statistically few they might be. On the other hand, Casting the deficiencies, weaknesses and flaws are also discussed by indicating some solutions and pointers on possible methods to improve. Hence, this thesis would demonstrate the high importance of this topic and consequently help construction managers and workers realize that safety should become a priority on all sites in the country. Researches done and interviews conducted show that fall hazards prevention/protection techniques are only implemented by large scale companies, and totally ignored by other companies which constitute the highest percentage of the active companies in the market now. Several causes are behind this and the result is one: More lives are put in danger due to lack of education, absence of audits and sanctions, and insufficient budgets
ContributorsMdawar, Hikmat (Author) / Gibson, George Edward (Thesis advisor) / El Asmar, Mounir (Committee member) / Sullivan, Kenneth (Committee member) / Arizona State University (Publisher)
Created2022
190881-Thumbnail Image.png
Description
The management of underground utilities is a complex and challenging task due to the uncertainty regarding the location of existing infrastructure. The lack of accurate information often leads to excavation-related damages, which pose a threat to public safety. In recent years, advanced underground utilities management systems have been developed to

The management of underground utilities is a complex and challenging task due to the uncertainty regarding the location of existing infrastructure. The lack of accurate information often leads to excavation-related damages, which pose a threat to public safety. In recent years, advanced underground utilities management systems have been developed to improve the safety and efficiency of excavation work. This dissertation aims to explore the potential applications of blockchain technology in the management of underground utilities and reduction of excavation-related damage. The literature review provides an overview of the current systems for managing underground infrastructure, including Underground Infrastructure Management (UIM) and 811, and highlights the benefits of advanced underground utilities management systems in enhancing safety and efficiency on construction sites. The review also examines the limitations and challenges of the existing systems and identifies the opportunities for integrating blockchain technology to improve their performance. The proposed application involves the creation of a shared database of information about the location and condition of pipes, cables, and other underground infrastructure, which can be updated in real time by authorized users such as utility companies and government agencies. The use of blockchain technology can provide an additional layer of security and transparency to the system, ensuring the reliability and accuracy of the information. Contractors and excavation companies can access this information before commencing work, reducing the risk of accidental damage to underground utilities.
ContributorsAlnahari, Mohammed S (Author) / Ariaratnam, Samuel T (Thesis advisor) / El Asmar, Mounir (Committee member) / Czerniawski, Thomas (Committee member) / Arizona State University (Publisher)
Created2023