Matching Items (1,001)
Filtering by

Clear all filters

137869-Thumbnail Image.png
Description
Meteorology is an uncommon term rarely resonating through elementary classrooms. However, it is a concept found in both fourth and sixth grade Arizona science standards. As issues involving the environment are becoming more pertinent, it is important to study and understand atmospheric processes along with fulfilling the standards for each

Meteorology is an uncommon term rarely resonating through elementary classrooms. However, it is a concept found in both fourth and sixth grade Arizona science standards. As issues involving the environment are becoming more pertinent, it is important to study and understand atmospheric processes along with fulfilling the standards for each grade level. This thesis project teaches the practical skills of weather map reading and weather forecasting through the creation and execution of an after school lesson with the aide of seven teen assistants.
ContributorsChoulet, Shayna (Author) / Walters, Debra (Thesis director) / Oliver, Jill (Committee member) / Balling, Robert (Committee member) / Barrett, The Honors College (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2012-12
137870-Thumbnail Image.png
Description
Plants are essential to human life. They release oxygen into the atmosphere for us to breathe. They also provide shelter, medicine, clothing, tools, and food. For many people, the food that is on their tables and in their supermarkets isn't given much thought. Where did it come from? What part

Plants are essential to human life. They release oxygen into the atmosphere for us to breathe. They also provide shelter, medicine, clothing, tools, and food. For many people, the food that is on their tables and in their supermarkets isn't given much thought. Where did it come from? What part of the plant is it? How does it relate to others in the plant kingdom? How do other cultures use this plant? The most many of us know about them is that they are at the supermarket when we need them for dinner (Nabhan, 2009) (Vileisis, 2008).
ContributorsBarron, Kara (Author) / Landrum, Leslie (Thesis director) / Swanson, Tod (Committee member) / Pigg, Kathleen (Committee member) / Barrett, The Honors College (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2012-12
137871-Thumbnail Image.png
DescriptionBased on previous research and findings it is proven that a non-profit class to create awareness will be beneficial in the prevention of eating disorders. This analysis will provide significant research to defend the proposed class.
ContributorsAllen, Brittany (Author) / Chung, Deborah (Author) / Fey, Richard (Thesis director) / Peck, Sidnee (Committee member) / Mazurkiewicz, Milena (Committee member) / Barrett, The Honors College (Contributor) / W. P. Carey School of Business (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2012-12
Description
Restraint stress is the most commonly used laboratory stressor. It is difficult to characterize as psychological or physical, because past studies show psychological features, but the nature of confinement adds a physical dimension. This was the first study to investigate how experience with restraint stress affects brain response to the

Restraint stress is the most commonly used laboratory stressor. It is difficult to characterize as psychological or physical, because past studies show psychological features, but the nature of confinement adds a physical dimension. This was the first study to investigate how experience with restraint stress affects brain response to the next stress without a physical burden. Pair-housed adult male rats were transported to a novel context and restrained or left undisturbed (6hr). The next day, rats were returned to the same context and were either restrained or left undisturbed in the context (n=8/group). After 90min, rats were euthanized to determine functional activation in limbic structures using Fos immunohistochemistry and to measure HPA axis reactivity through blood serum corticosterone levels. Regardless of day 1 experience, context exposure on day 2 enhanced Fos expression in CA1 and CA3 of the hippocampus, basolateral amygdala, and central amygdala. Conversely, other regions and corticosterone levels demonstrated modulation from the previous day's experience. Specifically, rats that were placed back into the restraint context but not restrained on day 2 showed enhanced Fos expression in the dentate gyrus suprapyramidal blade (DGSup), and infralimbic cortex (IL). Also Fos expression was attenuated in rats that received two restraint exposures in the IL and medial amygdala (MEA), suggesting habituation. Only the DG infrapyramidal blade (DGInf) showed enhanced Fos expression to restraint on day 2 without influence of the previous day. While context predominately directed Fos activation, prior experience with restraint influenced Fos expression in the DGSup, IL, MEA and corticosterone levels to support restraint having psychological components.
ContributorsAnouti, P. Danya (Author) / Conrad, D. Cheryl (Thesis director) / Hammer, Ronald (Committee member) / Hoffman, N. Ann (Committee member) / Barrett, The Honors College (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2012-12
152014-Thumbnail Image.png
Description
Olfaction is an important sensory modality for behavior since odors inform animals of the presence of food, potential mates, and predators. The fruit fly, Drosophila melanogaster, is a favorable model organism for the investigation of the biophysical mechanisms that contribute to olfaction because its olfactory system is anatomically similar to

Olfaction is an important sensory modality for behavior since odors inform animals of the presence of food, potential mates, and predators. The fruit fly, Drosophila melanogaster, is a favorable model organism for the investigation of the biophysical mechanisms that contribute to olfaction because its olfactory system is anatomically similar to but simpler than that of vertebrates. In the Drosophila olfactory system, sensory transduction takes place in olfactory receptor neurons housed in the antennae and maxillary palps on the front of the head. The first stage of olfactory processing resides in the antennal lobe, where the structural unit is the glomerulus. There are at least three classes of neurons in the antennal lobe - excitatory projection neurons, excitatory local neurons, and inhibitory local neurons. The arborizations of the local neurons are confined to the antennal lobe, and output from the antennal lobe is carried by projection neurons to higher regions of the brain. Different views exist of how circuits of the Drosophila antennal lobe translate input from the olfactory receptor neurons into projection neuron output. We construct a conductance based neuronal network model of the Drosophila antennal lobe with the aim of understanding possible mechanisms within the antennal lobe that account for the variety of projection neuron activity observed in experimental data. We explore possible outputs obtained from olfactory receptor neuron input that mimic experimental recordings under different connectivity paradigms. First, we develop realistic minimal cell models for the excitatory local neurons, inhibitory local neurons, and projections neurons based on experimental data for Drosophila channel kinetics, and explore the firing characteristics and mathematical structure of these models. We then investigate possible interglomerular and intraglomerular connectivity patterns in the Drosophila antennal lobe, where olfactory receptor neuron input to the antennal lobe is modeled with Poisson spike trains, and synaptic connections within the antennal lobe are mediated by chemical synapses and gap junctions as described in the Drosophila antennal lobe literature. Our simulation results show that inhibitory local neurons spread inhibition among all glomeruli, where projection neuron responses are decreased relatively uniformly for connections of synaptic strengths that are homogeneous. Also, in the case of homogeneous excitatory synaptic connections, the excitatory local neuron network facilitates odor detection in the presence of weak stimuli. Excitatory local neurons can spread excitation from projection neurons that receive more input from olfactory receptor neurons to projection neurons that receive less input from olfactory receptor neurons. For the parameter values for the network models associated with these results, eLNs decrease the ability of the network to discriminate among single odors.
ContributorsLuli, Dori (Author) / Crook, Sharon (Thesis advisor) / Baer, Steven (Committee member) / Castillo-Chavez, Carlos (Committee member) / Smith, Brian (Committee member) / Arizona State University (Publisher)
Created2013
151575-Thumbnail Image.png
Description
A general continuum model for simulating the flow of ions in the salt baths that surround and fill excitable neurons is developed and presented. The ion densities and electric potential are computed using the drift-diffusion equations. In addition, a detailed model is given for handling the electrical dynamics on interior

A general continuum model for simulating the flow of ions in the salt baths that surround and fill excitable neurons is developed and presented. The ion densities and electric potential are computed using the drift-diffusion equations. In addition, a detailed model is given for handling the electrical dynamics on interior membrane boundaries, including a model for ion channels in the membranes that facilitate the transfer of ions in and out of cells. The model is applied to the triad synapse found in the outer plexiform layer of the retina in most species. Experimental evidence suggests the existence of a negative feedback pathway between horizontal cells and cone photoreceptors that modulates the flow of calcium ions into the synaptic terminals of cones. However, the underlying mechanism for this feedback is controversial and there are currently three competing hypotheses: the ephaptic hypothesis, the pH hypothesis and the GABA hypothesis. The goal of this work is to test some features of the ephaptic hypothesis using detailed simulations that employ rigorous numerical methods. The model is first applied in a simple rectangular geometry to demonstrate the effects of feedback for different extracellular gap widths. The model is then applied to a more complex and realistic geometry to demonstrate the existence of strictly electrical feedback, as predicted by the ephaptic hypothesis. Lastly, the effects of electrical feedback in regards to the behavior of the bipolar cell membrane potential is explored. Figures for the ion densities and electric potential are presented to verify key features of the model. The computed steady state IV curves for several cases are presented, which can be compared to experimental data. The results provide convincing evidence in favor of the ephaptic hypothesis since the existence of feedback that is strictly electrical in nature is shown, without any dependence on pH effects or chemical transmitters.
ContributorsJones, Jeremiah (Author) / Gardner, Carl (Committee member) / Baer, Steven (Committee member) / Crook, Sharon (Committee member) / Kostelich, Eric (Committee member) / Ringhofer, Christian (Committee member) / Arizona State University (Publisher)
Created2013
150698-Thumbnail Image.png
Description
Dendrites are the structures of a neuron specialized to receive input signals and to provide the substrate for the formation of synaptic contacts with other cells. The goal of this work is to study the activity-dependent mechanisms underlying dendritic growth in a single-cell model. For this, the individually identifiable adult

Dendrites are the structures of a neuron specialized to receive input signals and to provide the substrate for the formation of synaptic contacts with other cells. The goal of this work is to study the activity-dependent mechanisms underlying dendritic growth in a single-cell model. For this, the individually identifiable adult motoneuron, MN5, in Drosophila melanogaster was used. This dissertation presents the following results. First, the natural variability of morphological parameters of the MN5 dendritic tree in control flies is not larger than 15%, making MN5 a suitable model for quantitative morphological analysis. Second, three-dimensional topological analyses reveals that different parts of the MN5 dendritic tree innervate spatially separated areas (termed "isoneuronal tiling"). Third, genetic manipulation of the MN5 excitability reveals that both increased and decreased activity lead to dendritic overgrowth; whereas decreased excitability promoted branch elongation, increased excitability enhanced dendritic branching. Next, testing the activity-regulated transcription factor AP-1 for its role in MN5 dendritic development reveals that neural activity enhanced AP-1 transcriptional activity, and that AP-1 expression lead to opposite dendrite fates depending on its expression timing during development. Whereas overexpression of AP-1 at early stages results in loss of dendrites, AP-1 overexpression after the expression of acetylcholine receptors and the formation of all primary dendrites in MN5 causes overgrowth. Fourth, MN5 has been used to examine dendritic development resulting from the expression of the human gene MeCP2, a transcriptional regulator involved in the neurodevelopmental disease Rett syndrome. Targeted expression of full-length human MeCP2 in MN5 causes impaired dendritic growth, showing for the first time the cellular consequences of MeCP2 expression in Drosophila neurons. This dendritic phenotype requires the methyl-binding domain of MeCP2 and the chromatin remodeling protein Osa. In summary, this work has fully established MN5 as a single-neuron model to study mechanisms underlying dendrite development, maintenance and degeneration, and to test the behavioral consequences resulting from dendritic growth misregulation. Furthermore, this thesis provides quantitative description of isoneuronal tiling of a central neuron, offers novel insight into activity- and AP-1 dependent developmental plasticity, and finally, it establishes Drosophila MN5 as a model to study some specific aspects of human diseases.
ContributorsVonhoff, Fernando Jaime (Author) / Duch, Carsten J (Thesis advisor) / Smith, Brian H. (Committee member) / Vu, Eric (Committee member) / Crook, Sharon (Committee member) / Arizona State University (Publisher)
Created2012
137145-Thumbnail Image.png
Description
Through this creative project, I executed a Distracted Driving Awareness Campaign at Arizona State University to raise awareness about the dangers of distracted driving, specifically texting while driving. As an Undergraduate Student Government Senator, my priority is the safety and success of students, both in and out of the classroom.

Through this creative project, I executed a Distracted Driving Awareness Campaign at Arizona State University to raise awareness about the dangers of distracted driving, specifically texting while driving. As an Undergraduate Student Government Senator, my priority is the safety and success of students, both in and out of the classroom. By partnering with State Farm and AT&T, we were able to raise awareness about the dangers of distracted driving and collected over 200 pledges from students to never text and drive.
ContributorsHibbs, Jordan Ashley (Author) / Miller, Clark (Thesis director) / Parmentier, Mary Jane (Committee member) / Barrett, The Honors College (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Politics and Global Studies (Contributor) / Department of Psychology (Contributor) / Graduate College (Contributor)
Created2014-05
137709-Thumbnail Image.png
Description
Background: Latinos represent 40.8% of the population in Phoenix (U.S. Census Bureau Population Division, 2010). South Phoenix, also known as the South Mountain Village, defined in geographical terms as area zip codes 85040 and 85042; is a predominantly Latino community comprised of mixed citizenship status households. During the 2010 United

Background: Latinos represent 40.8% of the population in Phoenix (U.S. Census Bureau Population Division, 2010). South Phoenix, also known as the South Mountain Village, defined in geographical terms as area zip codes 85040 and 85042; is a predominantly Latino community comprised of mixed citizenship status households. During the 2010 United States Census 60.3% of the population in South Phoenix identified as Latino, 25.75% of the total population was foreign born. Of the foreign born population, 88.95% were of Latin American origin (United States Census Bureau, 2007-2011 American Community Survey). Understanding how Latino immigrants perceive differences in health between their communities in country of origin and communities in the United States is largely unknown. Irrespective of political positions, understanding how Latino immigrants perceive personal health and the health of their communities is of interest to inform public policy and implement needed interventions in the
public health sphere.
Methods: Semi-structured interviews were collected from 55 adults from the South Phoenix community between November 2009 and September 2010. Interviews were digitally recorded with participant permission and transcribed. Of those collected, 48 transcribed interviews were analyzed using a codebook designed by the researcher. Percent agreement evaluated inter-rater reliability.Results: Latino immigrants in South Phoenix largely agree that health quality is heavily dependent on personal responsibility and not an intrinsic attribute of a given place. Emotional contentedness and distress, both factors of mental health, are impacted by cross-cultural differences between Latino and U.S. culture systems.
Conclusions: As people’s personal perceptions of differences in health are complex concepts influenced by personal backgrounds, culture, and beliefs, attempting to demark a side of the border as ‘healthier’ than the other using personal perceptions is overly simplified and misses central concepts. Instead, exploration of individual variables impacting health allowed this study to gain a more nuanced understanding in how people determine quality of both personal and environmental health. While Latino migrants in South Phoenix largely agree that health is based on personal responsibility and choices, many nonetheless experience higher levels of contentedness and emotional health in their country of origin.
ContributorsGray, Laurel (Author) / Wutich, Amber (Thesis director) / Quiroga, S. Seline (Committee member) / Nelson, Margaret (Committee member) / Slade, B. Alexandra (Committee member) / Barrett, The Honors College (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2013-05
137802-Thumbnail Image.png
Description
Identifying disease biomarkers may aid in the early detection of breast cancer and improve patient outcomes. Recent evidence suggests that tumors are immunogenic and therefore patients may launch an autoantibody response to tumor associated antigens. Single-chain variable fragments of autoantibodies derived from regional lymph node B cells of breast cancer

Identifying disease biomarkers may aid in the early detection of breast cancer and improve patient outcomes. Recent evidence suggests that tumors are immunogenic and therefore patients may launch an autoantibody response to tumor associated antigens. Single-chain variable fragments of autoantibodies derived from regional lymph node B cells of breast cancer patients were used to discover these tumor associated biomarkers on protein microarrays. Six candidate biomarkers were discovered from 22 heavy chain-only variable region antibody fragments screened. Validation tests are necessary to confirm the tumorgenicity of these antigens. However, the use of single-chain variable autoantibody fragments presents a novel platform for diagnostics and cancer therapeutics.
ContributorsSharman, M. Camila (Author) / Magee, Dewey (Mitch) (Thesis director) / Wallstrom, Garrick (Committee member) / Petritis, Brianne (Committee member) / Barrett, The Honors College (Contributor) / College of Liberal Arts and Sciences (Contributor) / Virginia G. Piper Center for Personalized Diagnostics (Contributor) / Biodesign Institute (Contributor)
Created2012-12