Matching Items (31)
Description
This research introduces Roblocks, a user-friendly system for learning Artificial Intelligence (AI) planning concepts using mobile manipulator robots. It uses a visual programming interface based on block-structured programming to make AI planning concepts easier to grasp for those who are new to robotics and AI planning. Users get to accomplish

This research introduces Roblocks, a user-friendly system for learning Artificial Intelligence (AI) planning concepts using mobile manipulator robots. It uses a visual programming interface based on block-structured programming to make AI planning concepts easier to grasp for those who are new to robotics and AI planning. Users get to accomplish any desired tasks by dynamically populating puzzle shaped blocks encoding the robot’s possible actions, allowing them to carry out tasks like navigation, planning, and manipulation by connecting blocks instead of writing code. Roblocks has two levels, where in the first level users are made to re-arrange a jumbled set of actions of a plan in the correct order so that a given goal could be achieved. In the second level, they select actions of their choice but at each step only those actions pertaining to the current state are made available to them, thereby pruning down the vast number of possible actions and suggesting only the truly feasible and relevant actions. Both of these levels have a simulation where the user plan is executed. Moreover, if the user plan is invalid or fails to achieve the given goal condition then an explanation for the failure is provided in simple English language. This makes it easier for everyone (especially for non-roboticists) to understand the cause of the failure.
ContributorsDave, Chirav (Author) / Srivastava, Siddharth (Thesis advisor) / Hsiao, Ihan (Committee member) / Zhang, Yu (Committee member) / Arizona State University (Publisher)
Created2019
157926-Thumbnail Image.png
Description
In order for a robot to solve complex tasks in real world, it needs to compute discrete, high-level strategies that can be translated into continuous movement trajectories. These problems become increasingly difficult with increasing numbers of objects and domain constraints, as well as with the increasing degrees of freedom of

In order for a robot to solve complex tasks in real world, it needs to compute discrete, high-level strategies that can be translated into continuous movement trajectories. These problems become increasingly difficult with increasing numbers of objects and domain constraints, as well as with the increasing degrees of freedom of robotic manipulator arms.

The first part of this thesis develops and investigates new methods for addressing these problems through hierarchical task and motion planning for manipulation with a focus on autonomous construction of free-standing structures using precision-cut planks. These planks can be arranged in various orientations to design complex structures; reliably and autonomously building such structures from scratch is computationally intractable due to the long planning horizon and the infinite branching factor of possible grasps and placements that the robot could make.

An abstract representation is developed for this class of problems and show how pose generators can be used to autonomously compute feasible robot motion plans for constructing a given structure. The approach was evaluated through simulation and on a real ABB YuMi robot. Results show that hierarchical algorithms for planning can effectively overcome the computational barriers to solving such problems.

The second part of this thesis proposes a deep learning-based algorithm to identify critical regions for motion planning. Further investigation is done whether these learned critical regions can be translated to learn high-level landmark actions for automated planning.
ContributorsKumar, Kislay (Author) / Srivastava, Siddharth (Thesis advisor) / Zhang, Yu (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2019
158844-Thumbnail Image.png
Description
Many real-world planning problems can be modeled as Markov Decision Processes (MDPs) which provide a framework for handling uncertainty in outcomes of action executions. A solution to such a planning problem is a policy that handles possible contingencies that could arise during execution. MDP solvers typically construct policies for a

Many real-world planning problems can be modeled as Markov Decision Processes (MDPs) which provide a framework for handling uncertainty in outcomes of action executions. A solution to such a planning problem is a policy that handles possible contingencies that could arise during execution. MDP solvers typically construct policies for a problem instance without re-using information from previously solved instances. Research in generalized planning has demonstrated the utility of constructing algorithm-like plans that reuse such information. However, using such techniques in an MDP setting has not been adequately explored.

This thesis presents a novel approach for learning generalized partial policies that can be used to solve problems with different object names and/or object quantities using very few example policies for learning. This approach uses abstraction for state representation, which allows the identification of patterns in solutions such as loops that are agnostic to problem-specific properties. This thesis also presents some theoretical results related to the uniqueness and succinctness of the policies computed using such a representation. The presented algorithm can be used as fast, yet greedy and incomplete method for policy computation while falling back to a complete policy search algorithm when needed. Extensive empirical evaluation on discrete MDP benchmarks shows that this approach generalizes effectively and is often able to solve problems much faster than existing state-of-art discrete MDP solvers. Finally, the practical applicability of this approach is demonstrated by incorporating it in an anytime stochastic task and motion planning framework to successfully construct free-standing tower structures using Keva planks.
ContributorsKala Vasudevan, Deepak (Author) / Srivastava, Siddharth (Thesis advisor) / Zhang, Yu (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2020
158851-Thumbnail Image.png
Description
Most planning agents assume complete knowledge of the domain, which may not be the case in scenarios where certain domain knowledge is missing. This problem could be due to design flaws or arise from domain ramifications or qualifications. In such cases, planning algorithms could produce highly undesirable behaviors. Planning with

Most planning agents assume complete knowledge of the domain, which may not be the case in scenarios where certain domain knowledge is missing. This problem could be due to design flaws or arise from domain ramifications or qualifications. In such cases, planning algorithms could produce highly undesirable behaviors. Planning with incomplete domain knowledge is more challenging than partial observability in the sense that the planning agent is unaware of the existence of such knowledge, in contrast to it being just unobservable or partially observable. That is the difference between known unknowns and unknown unknowns.

In this thesis, I introduce and formulate this as the problem of Domain Concretization, which is inverse to domain abstraction studied extensively before. Furthermore, I present a solution that starts from the incomplete domain model provided to the agent by the designer and uses teacher traces from human users to determine the candidate model set under a minimalistic model assumption. A robust plan is then generated for the maximum probability of success under the set of candidate models. In addition to a standard search formulation in the model-space, I propose a sample-based search method and also an online version of it to improve search time. The solution presented has been evaluated on various International Planning Competition domains where incompleteness was introduced by deleting certain predicates from the complete domain model. The solution is also tested in a robot simulation domain to illustrate its effectiveness in handling incomplete domain knowledge. The results show that the plan generated by the algorithm increases the plan success rate without impacting action cost too much.
ContributorsSharma, Akshay (Author) / Zhang, Yu (Thesis advisor) / Fainekos, Georgios (Committee member) / Srivastava, Siddharth (Committee member) / Arizona State University (Publisher)
Created2020
158597-Thumbnail Image.png
Description
Robot motion planning requires computing a sequence of waypoints from an initial configuration of the robot to the goal configuration. Solving a motion planning problem optimally is proven to be NP-Complete. Sampling-based motion planners efficiently compute an approximation of the optimal solution. They sample the configuration space uniformly and hence

Robot motion planning requires computing a sequence of waypoints from an initial configuration of the robot to the goal configuration. Solving a motion planning problem optimally is proven to be NP-Complete. Sampling-based motion planners efficiently compute an approximation of the optimal solution. They sample the configuration space uniformly and hence fail to sample regions of the environment that have narrow passages or pinch points. These critical regions are analogous to landmarks from planning literature as the robot is required to pass through them to reach the goal.

This work proposes a deep learning approach that identifies critical regions in the environment and learns a sampling distribution to effectively sample them in high dimensional configuration spaces.

A classification-based approach is used to learn the distributions. The robot degrees of freedom (DOF) limits are binned and a distribution is generated from sampling motion plan solutions. Conditional information like goal configuration and robot location encoded in the network inputs showcase the network learning to bias the identified critical regions towards the goal configuration. Empirical evaluations are performed against the state of the art sampling-based motion planners on a variety of tasks requiring the robot to pass through critical regions. An empirical analysis of robotic systems with three to eight degrees of freedom indicates that this approach effectively improves planning performance.
ContributorsSrinet, Abhyudaya (Author) / Srivastava, Siddharth (Thesis advisor) / Zhang, Yu (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2020
158256-Thumbnail Image.png
Description
There have been multiple attempts of coupling neural networks with external memory components for sequence learning problems. Such architectures have demonstrated success in algorithmic, sequence transduction, question-answering and reinforcement learning tasks. Most notable of these attempts is the Neural Turing Machine (NTM), which is an implementation of the Turing Machine

There have been multiple attempts of coupling neural networks with external memory components for sequence learning problems. Such architectures have demonstrated success in algorithmic, sequence transduction, question-answering and reinforcement learning tasks. Most notable of these attempts is the Neural Turing Machine (NTM), which is an implementation of the Turing Machine with a neural network controller that interacts with a continuous memory. Although the architecture is Turing complete and hence, universally computational, it has seen limited success with complex real-world tasks.

In this thesis, I introduce an extension of the Neural Turing Machine, the Neural Harvard Machine, that implements a fully differentiable Harvard Machine framework with a feed-forward neural network controller. Unlike the NTM, it has two different memories - a read-only program memory and a read-write data memory. A sufficiently complex task is divided into smaller, simpler sub-tasks and the program memory stores parameters of pre-trained networks trained on these sub-tasks. The controller reads inputs from an input-tape, uses the data memory to store valuable signals and writes correct symbols to an output tape. The output symbols are a function of the outputs of each sub-network and the state of the data memory. Hence, the controller learns to load the weights of the appropriate program network to generate output symbols.

A wide range of experiments demonstrate that the Harvard Machine framework learns faster and performs better than the NTM and RNNs like LSTM, as the complexity of tasks increases.
ContributorsBhatt, Manthan Bharat (Author) / Ben Amor, Hani (Thesis advisor) / Zhang, Yu (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2020
161301-Thumbnail Image.png
Description
In settings where a human and an embodied AI (artificially intelligent) agent coexist, the AI agent has to be capable of reasoning with the human's preconceived notions about the environment as well as with the human's perception limitations. In addition, it should be capable of communicating intentions and objectives effectively

In settings where a human and an embodied AI (artificially intelligent) agent coexist, the AI agent has to be capable of reasoning with the human's preconceived notions about the environment as well as with the human's perception limitations. In addition, it should be capable of communicating intentions and objectives effectively to the human-in-the-loop. While acting in the presence of human observers, the AI agent can synthesize interpretable behaviors like explicable, legible, and assistive behaviors by accounting for the human's mental model (inclusive of her sensor model) in its reasoning process. This thesis will study different behavior synthesis algorithms which focus on improving the interpretability of the agent's behavior in the presence of a human observer. Further, this thesis will study how environment redesign strategies can be leveraged to improve the overall interpretability of the agent's behavior. At times, the agent's environment may also consist of purely adversarial entities or mixed entities (i.e. adversarial as well as cooperative entities), that are trying to infer information from the AI agent's behavior. In such settings, it is crucial for the agent to exhibit obfuscatory behavior that prevents sensitive information from falling into the hands of the adversarial entities. This thesis will show that it is possible to synthesize interpretable as well as obfuscatory behaviors using a single underlying algorithmic framework.
ContributorsKulkarni, Anagha (Author) / Kambhampati, Subbarao (Thesis advisor) / Kamar, Ece (Committee member) / Smith, David E. (Committee member) / Srivastava, Siddharth (Committee member) / Zhang, Yu (Committee member) / Arizona State University (Publisher)
Created2021
161528-Thumbnail Image.png
Description
In classification applications, such as medical disease diagnosis, the cost of one type of error (false negative) could greatly outweigh the other (false positive) enabling the need of asymmetric error control. Due to this unique nature of the problem, traditional machine learning techniques, even with much improved accuracy, may not

In classification applications, such as medical disease diagnosis, the cost of one type of error (false negative) could greatly outweigh the other (false positive) enabling the need of asymmetric error control. Due to this unique nature of the problem, traditional machine learning techniques, even with much improved accuracy, may not be ideal as they do not provide a way to control the false negatives below a certain threshold. To address this need, a classification algorithm that can provide asymmetric error control is proposed. The theoretical foundation for this algorithm is based on Neyman-Pearson (NP) Lemma and it is complemented with sample splitting and order statistics to pick a threshold that enables an upper bound on the number of false negatives. Additionally, this classifier addresses the imbalance of the data, which is common in medical datasets, by using Hellinger distance as the splitting criterion. This eliminates the need of sampling methods, which add complexity and the need for parameter selection. This approach is used to create a novel tree-based classifier that enables asymmetric error control. Applications, such as prediction of the severity of cardiac arrhythmia, require classification over multiple classes. The NP oracle inequalities for binary classes are not immediately applicable for the multiclass NP classification, leading to a multi-step procedure proposed in this dissertation to extend the algorithm in the context of multiple classes. This classifier is used in predicting various forms of cardiac disease for both binary and multi-class classification problems with not only comparable accuracy metrics but also with full control over the number of false negatives. Moreover, this research allows us to pick the threshold for the classifier in a data adaptive way. This dissertation also shows that this methodology can be extended to non medical applications that require classification with asymmetric error control.
ContributorsBokhari, Wasif (Author) / Bansal, Ajay (Thesis advisor) / Zhang, Yu (Committee member) / Yang, Yezhou (Committee member) / Bahadur, Faisal (Committee member) / Arizona State University (Publisher)
Created2021
161715-Thumbnail Image.png
Description
Understanding the limits and capabilities of an AI system is essential for safe and effective usability of modern AI systems. In the query-based AI assessment paradigm, a personalized assessment module queries a black-box AI system on behalf of a user and returns a user-interpretable model of the AI system’s capabilities.

Understanding the limits and capabilities of an AI system is essential for safe and effective usability of modern AI systems. In the query-based AI assessment paradigm, a personalized assessment module queries a black-box AI system on behalf of a user and returns a user-interpretable model of the AI system’s capabilities. This thesis develops this paradigm to learn interpretable action models of simulator-based agents. Two types of agents are considered: the first uses high-level actions where the user’s vocabulary captures the simulator state perfectly, and the second operates on low-level actions where the user’s vocabulary captures only an abstraction of the simulator state. Methods are developed to interface the assessment module with these agents. Empirical results show that this method is capable of learning interpretable models of agents operating in a range of domains.
ContributorsMarpally, Shashank Rao (Author) / Srivastava, Siddharth (Thesis advisor) / Zhang, Yu (Committee member) / Fainekos, Georgios E (Committee member) / Arizona State University (Publisher)
Created2021
161939-Thumbnail Image.png
Description
Traditional Reinforcement Learning (RL) assumes to learn policies with respect to reward available from the environment but sometimes learning in a complex domain requires wisdom which comes from a wide range of experience. In behavior based robotics, it is observed that a complex behavior can be described by a combination

Traditional Reinforcement Learning (RL) assumes to learn policies with respect to reward available from the environment but sometimes learning in a complex domain requires wisdom which comes from a wide range of experience. In behavior based robotics, it is observed that a complex behavior can be described by a combination of simpler behaviors. It is tempting to apply similar idea such that simpler behaviors can be combined in a meaningful way to tailor the complex combination. Such an approach would enable faster learning and modular design of behaviors. Complex behaviors can be combined with other behaviors to create even more advanced behaviors resulting in a rich set of possibilities. Similar to RL, combined behavior can keep evolving by interacting with the environment. The requirement of this method is to specify a reasonable set of simple behaviors. In this research, I present an algorithm that aims at combining behavior such that the resulting behavior has characteristics of each individual behavior. This approach has been inspired by behavior based robotics, such as the subsumption architecture and motor schema-based design. The combination algorithm outputs n weights to combine behaviors linearly. The weights are state dependent and change dynamically at every step in an episode. This idea is tested on discrete and continuous environments like OpenAI’s “Lunar Lander” and “Biped Walker”. Results are compared with related domains like Multi-objective RL, Hierarchical RL, Transfer learning, and basic RL. It is observed that the combination of behaviors is a novel way of learning which helps the agent achieve required characteristics. A combination is learned for a given state and so the agent is able to learn faster in an efficient manner compared to other similar approaches. Agent beautifully demonstrates characteristics of multiple behaviors which helps the agent to learn and adapt to the environment. Future directions are also suggested as possible extensions to this research.
ContributorsVora, Kevin Jatin (Author) / Zhang, Yu (Thesis advisor) / Yang, Yezhou (Committee member) / Praharaj, Sarbeswar (Committee member) / Arizona State University (Publisher)
Created2021