Matching Items (27)
161731-Thumbnail Image.png
Description
As technological advancements in silicon, sensors, and actuation continue, the development of robotic swarms is shifting from the domain of science fiction to reality. Many swarm applications, such as environmental monitoring, precision agriculture, disaster response, and lunar prospecting, will require controlling numerous robots with limited capabilities and information to redistribute

As technological advancements in silicon, sensors, and actuation continue, the development of robotic swarms is shifting from the domain of science fiction to reality. Many swarm applications, such as environmental monitoring, precision agriculture, disaster response, and lunar prospecting, will require controlling numerous robots with limited capabilities and information to redistribute among multiple states, such as spatial locations or tasks. A scalable control approach is to program the robots with stochastic control policies such that the robot population in each state evolves according to a mean-field model, which is independent of the number and identities of the robots. Using this model, the control policies can be designed to stabilize the swarm to the target distribution. To avoid the need to reprogram the robots for different target distributions, the robot control policies can be defined to depend only on the presence of a “leader” agent, whose control policy is designed to guide the swarm to a particular distribution. This dissertation presents a novel deep reinforcement learning (deep RL) approach to designing control policies that redistribute a swarm as quickly as possible over a strongly connected graph, according to a mean-field model in the form of the discrete-time Kolmogorov forward equation. In the leader-based strategies, the leader determines its next action based on its observations of robot populations and shepherds the swarm over the graph by probabilistically repelling nearby robots. The scalability of this approach with the swarm size is demonstrated with leader control policies that are designed using two tabular Temporal-Difference learning algorithms, trained on a discretization of the swarm distribution. To improve the scalability of the approach with robot population and graph size, control policies for both leader-based and leaderless strategies are designed using an actor-critic deep RL method that is trained on the swarm distribution predicted by the mean-field model. In the leaderless strategy, the robots’ control policies depend only on their local measurements of nearby robot populations. The control approaches are validated for different graph and swarm sizes in numerical simulations, 3D robot simulations, and experiments on a multi-robot testbed.
ContributorsKakish, Zahi Mousa (Author) / Berman, Spring (Thesis advisor) / Yong, Sze Zheng (Committee member) / Marvi, Hamid (Committee member) / Pavlic, Theodore (Committee member) / Pratt, Stephen (Committee member) / Ben Amor, Hani (Committee member) / Arizona State University (Publisher)
Created2021
161600-Thumbnail Image.png
Description
In the development of autonomous ground vehicles (AGVs), how to guarantee vehicle lateral stability is one of the most critical aspects. Based on nonlinear vehicle lateral and tire dynamics, new driving requirements of AGVs demand further studies and analyses of vehicle lateral stability control strategies. To achieve comprehensive analyses and

In the development of autonomous ground vehicles (AGVs), how to guarantee vehicle lateral stability is one of the most critical aspects. Based on nonlinear vehicle lateral and tire dynamics, new driving requirements of AGVs demand further studies and analyses of vehicle lateral stability control strategies. To achieve comprehensive analyses and stability-guaranteed vehicle lateral driving control, this dissertation presents three main contributions.First, a new method is proposed to estimate and analyze vehicle lateral driving stability regions, which provide a direct and intuitive demonstration for stability control of AGVs. Based on a four-wheel vehicle model and a nonlinear 2D analytical LuGre tire model, a local linearization method is applied to estimate vehicle lateral driving stability regions by analyzing vehicle local stability at each operation point on a phase plane. The obtained stability regions are conservative because both vehicle and tire stability are simultaneously considered. Such a conservative feature is specifically important for characterizing the stability properties of AGVs. Second, to analyze vehicle stability, two novel features of the estimated vehicle lateral driving stability regions are studied. First, a shifting vector is formulated to explicitly describe the shifting feature of the lateral stability regions with respect to the vehicle steering angles. Second, dynamic margins of the stability regions are formulated and applied to avoid the penetration of vehicle state trajectory with respect to the region boundaries. With these two features, the shiftable stability regions are feasible for real-time stability analysis. Third, to keep the vehicle states (lateral velocity and yaw rate) always stay in the shiftable stability regions, different control methods are developed and evaluated. Based on different vehicle control configurations, two dynamic sliding mode controllers (SMC) are designed. To better control vehicle stability without suffering chattering issues in SMC, a non-overshooting model predictive control is proposed and applied. To further save computational burden for real-time implementation, time-varying control-dependent invariant sets and time-varying control-dependent barrier functions are proposed and adopted in a stability-guaranteed vehicle control problem. Finally, to validate the correctness and effectiveness of the proposed theories, definitions, and control methods, illustrative simulations and experimental results are presented and discussed.
ContributorsHuang, Yiwen (Author) / Chen, Yan (Thesis advisor) / Lee, Hyunglae (Committee member) / Ren, Yi (Committee member) / Yong, Sze Zheng (Committee member) / Zhang, Wenlong (Committee member) / Arizona State University (Publisher)
Created2021
132073-Thumbnail Image.png
Description
This paper presents a variable damping controller that can be implemented into wearable and exoskeleton robots. The variable damping controller functions by providing different levels of robotic damping from negative to positive to the coupled human-robot system. The wearable ankle robot was used to test this control strategy in the

This paper presents a variable damping controller that can be implemented into wearable and exoskeleton robots. The variable damping controller functions by providing different levels of robotic damping from negative to positive to the coupled human-robot system. The wearable ankle robot was used to test this control strategy in the different directions of motion. The range of damping applied was selected based on the known inherent damping of the human ankle, ensuring that the coupled system became positively damped, and therefore stable. Human experiments were performed to understand and quantify the effects of the variable damping controller on the human user. Within the study, the human subjects performed a target reaching exercise while the ankle robot provided the system with constant positive, constant negative, or variable damping. These three damping conditions could then be compared to analyze the performance of the system. The following performance measures were selected: maximum speed to quantify agility, maximum overshoot to quantify stability, and muscle activation to quantify effort required by the human user. Maximum speed was found to be statistically the same in the variable damping controller and the negative damping condition and to be increased from positive damping controller to variable damping condition by 57.9%, demonstrating the agility of the system. Maximum overshoot was found to significantly decrease overshoot from the negative damping condition to the variable damping controller by 39.6%, demonstrating an improvement in system stability with the variable damping controller. Muscle activation results showed that the variable damping controller required less effort than the positive damping condition, evidenced by the decreased muscle activation of 23.8%. Overall, the study demonstrated that a variable damping controller can balance the trade-off between agility and stability in human-robot interactions and therefore has many practical implications.
ContributorsArnold, James Michael (Author) / Lee, Hyunglae (Thesis director) / Yong, Sze Zheng (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / School for Engineering of Matter,Transport & Enrgy (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12
131607-Thumbnail Image.png
Description
The objective of this project was to research and experimentally test methods of localization, waypoint following, and actuation for high-speed driving by an autonomous vehicle. This thesis describes the implementation of LiDAR localization techniques, Model Predictive Control waypoint following, and communication for actuation on a 2016 Chevrolet Camaro, Arizona State

The objective of this project was to research and experimentally test methods of localization, waypoint following, and actuation for high-speed driving by an autonomous vehicle. This thesis describes the implementation of LiDAR localization techniques, Model Predictive Control waypoint following, and communication for actuation on a 2016 Chevrolet Camaro, Arizona State University’s former EcoCAR. The LiDAR localization techniques include the NDT Mapping and Matching algorithms from the open-source autonomous vehicle platform, Autoware. The mapping algorithm was supplemented by that of Google Cartographer due to the limitations of map size in Autoware’s algorithms. The Model Predictive Control for waypoint following and the computer-microcontroller-actuator communication line are described. In addition to this experimental work, the thesis discusses an investigation of alternative approaches for each problem.
ContributorsCopenhaver, Bryce Stone (Author) / Berman, Spring (Thesis director) / Yong, Sze Zheng (Committee member) / Dean, W.P. Carey School of Business (Contributor) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
Description

This project compared two optimization-based formulations for solving multi-robot task allocation problems with tether constraints. The first approach, or the ”Iterative Method,” used the common multiple traveling salesman (mTSP) formulation and implemented an algorithm over the formulation to filter out solutions that failed to satisfy the tether constraint. The second

This project compared two optimization-based formulations for solving multi-robot task allocation problems with tether constraints. The first approach, or the ”Iterative Method,” used the common multiple traveling salesman (mTSP) formulation and implemented an algorithm over the formulation to filter out solutions that failed to satisfy the tether constraint. The second approach, named the ”Timing Formulation,” involved constructing a new formulation specifically designed account for robot timings, including the tether constraint in the formulation itself. The approaches were tested against each other in 10-city simulations and the results were compared. The Iterative Method could provide answers in 1- and 2-norm variations quickly, but its mTSP model formulation broke down and became infeasible at low city numbers. The 1-norm Timing Formulation quickly and reliably produced solutions but faced high computation times in its 2-norm manifestation. Ultimately, while the Timing Formulation is a more optimal method for solving tether-constrained task allocation problems, its reliance on the 1-norm for low computation times causes it to sacrifice some realism.

ContributorsGoodwin, Walter (Author) / Yong, Sze Zheng (Thesis director) / Grewal, Anoop (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2022-05
164614-Thumbnail Image.png
ContributorsGoodwin, Walter (Author) / Yong, Sze Zheng (Thesis director) / Grewal, Anoop (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2022-05
164615-Thumbnail Image.png
ContributorsGoodwin, Walter (Author) / Yong, Sze Zheng (Thesis director) / Grewal, Anoop (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2022-05