Matching Items (193)
189210-Thumbnail Image.png
Description
Navigation and mapping in GPS-denied environments, such as coal mines ordilapidated buildings filled with smog or particulate matter, pose a significant challenge due to the limitations of conventional LiDAR or vision systems. Therefore there exists a need for a navigation algorithm and mapping strategy which do not use vision systems but are still

Navigation and mapping in GPS-denied environments, such as coal mines ordilapidated buildings filled with smog or particulate matter, pose a significant challenge due to the limitations of conventional LiDAR or vision systems. Therefore there exists a need for a navigation algorithm and mapping strategy which do not use vision systems but are still able to explore and map the environment. The map can further be used by first responders and cave explorers to access the environments. This thesis presents the design of a collision-resilient Unmanned Aerial Vehicle (UAV), XPLORER that utilizes a novel navigation algorithm for exploration and simultaneous mapping of the environment. The real-time navigation algorithm uses the onboard Inertial Measurement Units (IMUs) and arm bending angles for contact estimation and employs an Explore and Exploit strategy. Additionally, the quadrotor design is discussed, highlighting its improved stability over the previous design. The generated map of the environment can be utilized by autonomous vehicles to navigate the environment. The navigation algorithm is validated in multiple real-time experiments in different scenarios consisting of concave and convex corners and circular objects. Furthermore, the developed mapping framework can serve as an auxiliary input for map generation along with conventional LiDAR or vision-based mapping algorithms. Both the navigation and mapping algorithms are designed to be modular, making them compatible with conventional UAVs also. This research contributes to the development of navigation and mapping techniques for GPS-denied environments, enabling safer and more efficient exploration of challenging territories.
ContributorsPandian Saravanakumaran, Aravind Adhith (Author) / Zhang, Wenlong (Thesis advisor) / Das, Jnaneshwar (Committee member) / Berman, Spring (Committee member) / Arizona State University (Publisher)
Created2023
189245-Thumbnail Image.png
Description
Recent advances in cyber-physical systems, artificial intelligence, and cloud computing have driven the widespread deployment of Internet-of-Things (IoT) devices in smart homes. However, the spate of cyber attacks exploiting the vulnerabilities and weak security management of smart home IoT devices have highlighted the urgency and challenges of designing efficient mechanisms

Recent advances in cyber-physical systems, artificial intelligence, and cloud computing have driven the widespread deployment of Internet-of-Things (IoT) devices in smart homes. However, the spate of cyber attacks exploiting the vulnerabilities and weak security management of smart home IoT devices have highlighted the urgency and challenges of designing efficient mechanisms for detecting, analyzing, and mitigating security threats towards them. In this dissertation, I seek to address the security and privacy issues of smart home IoT devices from the perspectives of traffic measurement, pattern recognition, and security applications. I first propose an efficient multidimensional smart home network traffic measurement framework, which enables me to deeply understand the smart home IoT ecosystem and detect various vulnerabilities and flaws. I further design intelligent schemes to efficiently extract security-related IoT device event and user activity patterns from the encrypted smart home network traffic. Based on the knowledge of how smart home operates, different systems for securing smart home networks are proposed and implemented, including abnormal network traffic detection across multiple IoT networking protocol layers, smart home safety monitoring with extracted spatial information about IoT device events, and system-level IoT vulnerability analysis and network hardening.
ContributorsWan, Yinxin (Author) / Xue, Guoliang (Thesis advisor) / Xu, Kuai (Thesis advisor) / Yang, Yezhou (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2023
189365-Thumbnail Image.png
Description
While wearable soft robots have successfully addressed many inherent design limitations faced by wearable rigid robots, they possess a unique set of challenges due to their soft and compliant nature. Some of these challenges are present in the sensing, modeling, control and evaluation of wearable soft robots. Machine learning algorithms

While wearable soft robots have successfully addressed many inherent design limitations faced by wearable rigid robots, they possess a unique set of challenges due to their soft and compliant nature. Some of these challenges are present in the sensing, modeling, control and evaluation of wearable soft robots. Machine learning algorithms have shown promising results for sensor fusion with wearable robots, however, they require extensive data to train models for different users and experimental conditions. Modeling soft sensors and actuators require characterizing non-linearity and hysteresis, which complicates deriving an analytical model. Experimental characterization can capture the characteristics of non-linearity and hysteresis but requires developing a synthesized model for real-time control. Controllers for wearable soft robots must be robust to compensate for unknown disturbances that arise from the soft robot and its interaction with the user. Since developing dynamic models for soft robots is complex, inaccuracies that arise from the unmodeled dynamics lead to significant disturbances that the controller needs to compensate for. In addition, obtaining a physical model of the human-robot interaction is complex due to unknown human dynamics during walking. Finally, the performance of soft robots for wearable applications requires extensive experimental evaluation to analyze the benefits for the user. To address these challenges, this dissertation focuses on the sensing, modeling, control and evaluation of soft robots for wearable applications. A model-based sensor fusion algorithm is proposed to improve the estimation of human joint kinematics, with a soft flexible robot that requires compact and lightweight sensors. To overcome limitations with rigid sensors, an inflatable soft haptic sensor is developed to enable gait sensing and haptic feedback. Through experimental characterization, a mathematical model is derived to quantify the user's ground reaction forces and the delivered haptic force. Lastly, the performance of a wearable soft exosuit in assisting human users during lifting tasks is evaluated, and the benefits obtained from the soft robot assistance are analyzed.
ContributorsQuiñones Yumbla, Emiliano (Author) / Zhang, Wenlong (Thesis advisor) / Berman, Spring (Committee member) / Lee, Hyunglae (Committee member) / Marvi, Hamid (Committee member) / Sugar, Thomas (Committee member) / Arizona State University (Publisher)
Created2023
189366-Thumbnail Image.png
Description
In recent years, there has been a growing emphasis on developing automated systems to enhance traffic safety, particularly in the detection of dilemma zones (DZ) at intersections. This study focuses on the automated detection of DZs at roundabouts using trajectory forecasting, presenting an advanced system with perception capabilities. The system

In recent years, there has been a growing emphasis on developing automated systems to enhance traffic safety, particularly in the detection of dilemma zones (DZ) at intersections. This study focuses on the automated detection of DZs at roundabouts using trajectory forecasting, presenting an advanced system with perception capabilities. The system utilizes a modular, graph-structured recurrent model that predicts the trajectories of various agents, accounting for agent dynamics and incorporating heterogeneous data such as semantic maps. This enables the system to facilitate traffic management decision-making and improve overall intersection safety. To assess the system's performance, a real-world dataset of traffic roundabout intersections was employed. The experimental results demonstrate that our Superpowered Trajectron++ system exhibits high accuracy in detecting DZ events, with a false positive rate of approximately 10%. Furthermore, the system has the remarkable ability to anticipate and identify dilemma events before they occur, enabling it to provide timely instructions to vehicles. These instructions serve as guidance, determining whether vehicles should come to a halt or continue moving through the intersection, thereby enhancing safety and minimizing potential conflicts. In summary, the development of automated systems for detecting DZs represents an important advancement in traffic safety. The Superpowered Trajectron++ system, with its trajectory forecasting capabilities and incorporation of diverse data sources, showcases improved accuracy in identifying DZ events and can effectively guide vehicles in making informed decisions at roundabout intersections.
ContributorsChelenahalli Satish, Manthan (Author) / Yang, Yezhou (Thesis advisor) / Lu, Duo (Committee member) / Farhadi, Mohammad (Committee member) / Arizona State University (Publisher)
Created2023
189367-Thumbnail Image.png
Description
With the rise in social media usage and rapid communication, the proliferation of misinformation and fake news has become a pressing concern. The detection of multimodal fake news requires careful consideration of both image and textual semantics with proper alignment of the embedding space. Automated fake news detection has gained

With the rise in social media usage and rapid communication, the proliferation of misinformation and fake news has become a pressing concern. The detection of multimodal fake news requires careful consideration of both image and textual semantics with proper alignment of the embedding space. Automated fake news detection has gained significant attention in recent years. Existing research has focused on either capturing cross-modal inconsistency information or leveraging the complementary information within image-text pairs. However, the potential of powerful cross-modal contrastive learning methods and effective modality mixing remains an open-ended question. The thesis proposes a novel two-leg single-tower architecture equipped with self-attention mechanisms and custom contrastive loss to efficiently aggregate multimodal features. Furthermore, pretraining and fine-tuning are employed on the custom transformer model to classify fake news across the popular Twitter multimodal fake news dataset. The experimental results demonstrate the efficacy and robustness of the proposed approach, offering promising advancements in multimodal fake news detection research.
ContributorsLakhanpal, Sanyam (Author) / Lee, Kookjin (Thesis advisor) / Baral, Chitta (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2023
189391-Thumbnail Image.png
Description
Robotic technology can be broadly categorized into two main approaches based on the compliance of the robot's materials and structure: hard and soft. Hard, traditional robots, with mechanisms to transmit forces, provide high degrees of freedom (DoFs) and precise manipulation, making them commonly used in industry and academic research. The

Robotic technology can be broadly categorized into two main approaches based on the compliance of the robot's materials and structure: hard and soft. Hard, traditional robots, with mechanisms to transmit forces, provide high degrees of freedom (DoFs) and precise manipulation, making them commonly used in industry and academic research. The field of soft robotics, on the other hand, is a new trend from the past three decades of robotics that uses soft materials such as silicone or textiles as the body or material base instead of the rigid bodies used in traditional robots. Soft robots are typically pre-programmed with specific geometries, and perform well at tasks such as human-robot interaction, locomotion in complex environments, and adaptive reconfiguration to the environment, which reduces the cost of future programming and control. However, full soft robotic systems are often less mobile due to their actuation --pneumatics, high-voltage electricity or magnetics -- even if the robot itself is at a millimeter or centimeter scale. Rigid or hard robots, on the other hand, can often carry the weight of their own power, but with a higher burden of cost for control and sensing. A middle ground is thus sought, to combine soft robotics technologies with rigid robots, by implementing mechanism design principles with soft robots to embed functionalities or utilize soft robots as the actuator on a rigid robotic system towards an affordable robotic system design. This dissertation showcases five examples of this design principle with two main research branches: locomotion and wearable robotics. In the first research case, an example of how a miniature swimming robot can navigate through a granular environment using compliant plates is presented, compared to other robots that change their shape or use high DoF mechanisms. In the second pipeline, mechanism design is implemented using soft robotics concepts in a wearable robot. An origami-inspired, soft "exo-shell", that can change its stiffness on demand, is introduced. As a follow-up to this wearable origami-inspired robot, a geometry-based, ``near" self-locking modular brake is then presented. Finally, upon combining the origami-inspired wearable robot and brake design, a concept of a modular wearable robot is showcased for the purpose of answering a series of biomechanics questions.
ContributorsLi, Dongting (Author) / Aukes, Daniel M (Thesis advisor) / Sugar, Thomas G (Committee member) / Zhang, Wenlong (Committee member) / Arizona State University (Publisher)
Created2023
189394-Thumbnail Image.png
Description
One of the challenges in Artificial Intelligence (AI) is to integrate fast, automatic, and intuitive System-1 thinking with slow, deliberate, and logical System-2 thinking. While deep learning approaches excel at perception tasks for System-1, their reasoning capabilities for System-2 are limited. Besides, deep learning approaches are usually data-hungry, hard to

One of the challenges in Artificial Intelligence (AI) is to integrate fast, automatic, and intuitive System-1 thinking with slow, deliberate, and logical System-2 thinking. While deep learning approaches excel at perception tasks for System-1, their reasoning capabilities for System-2 are limited. Besides, deep learning approaches are usually data-hungry, hard to make use of explicit knowledge, and struggling with interpretability and justification. This dissertation presents three neuro-symbolic AI approaches that integrate neural networks (NNs) with symbolic AI methods to address these issues. The first approach presented in this dissertation is NeurASP, which combines NNs with Answer Set Programming (ASP), a logic programming formalism. NeurASP provides an effective way to integrate sub-symbolic and symbolic computation by treating NN outputs as probability distributions over atomic facts in ASP. The explicit knowledge encoded in ASP corrects mistakes in NN outputs and allows for better training with less data. To avoid NeurASP's bottleneck in symbolic computation, this dissertation presents a Constraint Loss via Straight-Through Estimators (CL-STE). CL-STE provides a systematic way to compile discrete logical constraints into a loss function over discretized NN outputs and scales significantly better than state-of-the-art neuro-symbolic methods. This dissertation also presents a finding when CL-STE was applied to Transformers. Transformers can be extended with recurrence to enhance its power for multi-step reasoning. Such Recurrent Transformer can straightforwardly be applied to visual constraint reasoning problems while successfully addressing the symbol grounding problem. Lastly, this dissertation addresses the limitation of pre-trained Large Language Models (LLMs) on multi-step logical reasoning problems with a dual-process neuro-symbolic reasoning system called LLM+ASP, where an LLM (e.g., GPT-3) serves as a highly effective few-shot semantic parser that turns natural language sentences into a logical form that can be used as input to ASP. LLM+ASP achieves state-of-the-art performance on several textual reasoning benchmarks and can handle robot planning tasks that an LLM alone fails to solve.
ContributorsYang, Zhun (Author) / Lee, Joohyung (Thesis advisor) / Baral, Chitta (Committee member) / Li, Baoxin (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2023
171733-Thumbnail Image.png
Description
Multibody Dynamic (MBD) models are important tools in motion analysis and are used to represent and accurately predict the behavior of systems in the real-world. These models have a range of applications, including the stowage and deployment of flexible deployables on spacecraft, the dynamic response of vehicles in automotive design

Multibody Dynamic (MBD) models are important tools in motion analysis and are used to represent and accurately predict the behavior of systems in the real-world. These models have a range of applications, including the stowage and deployment of flexible deployables on spacecraft, the dynamic response of vehicles in automotive design and crash testing, and mapping interactions of the human body. An accurate model can aid in the design of a system to ensure the system is effective and meets specified performance criteria when built. A model may have many design parameters, such as geometrical constraints and component mechanical properties, or controller parameters if the system uses an external controller. Varying these parameters and rerunning analyses by hand to find an ideal design can be time consuming for models that take hours or days to run. To reduce the amount of time required to find a set of parameters that produces a desired performance, optimization is necessary. Many papers have discussed methods for optimizing rigid and flexible MBD models, and separately their controllers, using both gradient-based and gradient-free algorithms. However, these optimization methods have not been used to optimize full-scale MBD models and their controllers simultaneously. This thesis presents a method for co-optimizing an MBD model and controller that allows for the flexibility to find model and controller-based solutions for systems with tightly coupled parameters. Specifically, the optimization is performed on a quadrotor drone MBD model undergoing disturbance from a slung load and its position controller to meet specified position error performance criteria. A gradient-free optimization algorithm and multiple objective approach is used due to the many local optima from the tradeoffs between the model and controller parameters. The thesis uses nine different quadrotor cases with three different position error formulations. The results are used to determine the effectiveness of the optimization and the ability to converge on a single optimal design. After reviewing the results, the optimization limitations are discussed as well as the ability to transition the optimization to work with different MBD models and their controllers.
ContributorsGambatese, Marcus (Author) / Zhang, Wenlong (Thesis advisor) / Berman, Spring (Committee member) / Inoyama, Daisaku (Committee member) / Arizona State University (Publisher)
Created2022
171740-Thumbnail Image.png
Description
An important objective of AI is to understand real-world observations and build up interactive communication with people. The ability to interpret and react to the perception reveals the important necessity of developing such a system across both the modalities of Vision (V) and Language (L). Although there have been massive

An important objective of AI is to understand real-world observations and build up interactive communication with people. The ability to interpret and react to the perception reveals the important necessity of developing such a system across both the modalities of Vision (V) and Language (L). Although there have been massive efforts on various VL tasks, e.g., Image/Video Captioning, Visual Question Answering, and Textual Grounding, very few of them focus on building the VL models with increased efficiency under real-world scenarios. The main focus of this dissertation is to comprehensively investigate the very uncharted efficient VL learning, aiming to build lightweight, data-efficient, and real-world applicable VL models. The proposed studies in this dissertation take three primary aspects into account when it comes to efficient VL, 1). Data Efficiency: collecting task-specific annotations is prohibitively expensive and so manual labor is not always attainable. Techniques are developed to assist the VL learning from implicit supervision, i.e., in a weakly- supervised fashion. 2). Continuing from that, efficient representation learning is further explored with increased scalability, leveraging a large image-text corpus without task-specific annotations. In particular, the knowledge distillation technique is studied for generic Representation Learning which proves to bring substantial performance gain to the regular representation learning schema. 3). Architectural Efficiency. Deploying the VL model on edge devices is notoriously challenging due to their cumbersome architectures. To further extend these advancements to the real world, a novel efficient VL architecture is designed to tackle the inference bottleneck and the inconvenient two-stage training. Extensive discussions have been conducted on several critical aspects that prominently influence the performances of compact VL models.
ContributorsFang, Zhiyuan (Author) / Yang, Yezhou (Thesis advisor) / Baral, Chitta (Committee member) / Liu, Huan (Committee member) / Liu, Zicheng (Committee member) / Arizona State University (Publisher)
Created2022
171810-Thumbnail Image.png
Description
For a system of autonomous vehicles functioning together in a traffic scene, 3Dunderstanding of participants in the field of view or surrounding is very essential for assessing the safety operation of the involved. This problem can be decomposed into online pose and shape estimation, which has been a core research area of

For a system of autonomous vehicles functioning together in a traffic scene, 3Dunderstanding of participants in the field of view or surrounding is very essential for assessing the safety operation of the involved. This problem can be decomposed into online pose and shape estimation, which has been a core research area of computer vision for over a decade now. This work is an add-on to support and improve the joint estimate of the pose and shape of vehicles from monocular cameras. The objective of jointly estimating the vehicle pose and shape online is enabled by what is called an offline reconstruction pipeline. In the offline reconstruction step, an approach to obtain the vehicle 3D shape with keypoints labeled is formulated. This work proposes a multi-view reconstruction pipeline using images and masks which can create an approximate shape of vehicles and can be used as a shape prior. Then a 3D model-fitting optimization approach to refine the shape prior using high quality computer-aided design (CAD) models of vehicles is developed. A dataset of such 3D vehicles with 20 keypoints annotated is prepared and call it the AvaCAR dataset. The AvaCAR dataset can be used to estimate the vehicle shape and pose, without having the need to collect significant amounts of data needed for adequate training of a neural network. The online reconstruction can use this synthesis dataset to generate novel viewpoints and simultaneously train a neural network for pose and shape estimation. Most methods in the current literature using deep neural networks, that are trained to estimate pose of the object from a single image, are inherently biased to the viewpoint of the images used. This approach aims at addressing these existing limitations in the current method by delivering the online estimation a shape prior which can generate novel views to account for the bias due to viewpoint. The dataset is provided with ground truth extrinsic parameters and the compact vector based shape representations which along with the multi-view dataset can be used to efficiently trained neural networks for vehicle pose and shape estimation. The vehicles in this library are evaluated with some standard metrics to assure they are capable of aiding online estimation and model based tracking.
ContributorsDUTTA, PRABAL BIJOY (Author) / Yang, Yezhou (Thesis advisor) / Berman, Spring (Committee member) / Lu, Duo (Committee member) / Arizona State University (Publisher)
Created2022