Matching Items (60)

134914-Thumbnail Image.png

Collaborative Computation in Self-Organizing Particle Systems

Description

Many forms of programmable matter have been proposed for various tasks. We use an abstract model of self-organizing particle systems for programmable matter which could be used for a variety

Many forms of programmable matter have been proposed for various tasks. We use an abstract model of self-organizing particle systems for programmable matter which could be used for a variety of applications, including smart paint and coating materials for engineering or programmable cells for medical uses. Previous research using this model has focused on shape formation and other spatial configuration problems, including line formation, compression, and coating. In this work we study foundational computational tasks that exceed the capabilities of the individual constant memory particles described by the model. These tasks represent new ways to use these self-organizing systems, which, in conjunction with previous shape and configuration work, make the systems useful for a wider variety of tasks. We present an implementation of a counter using a line of particles, which makes it possible for the line of particles to count to and store values much larger than their individual capacities. We then present an algorithm that takes a matrix and a vector as input and then sets up and uses a rectangular block of particles to compute the matrix-vector multiplication. This setup also utilizes the counter implementation to store the resulting vector from the matrix-vector multiplication. Operations such as counting and matrix multiplication can leverage the distributed and dynamic nature of the self-organizing system to be more efficient and adaptable than on traditional linear computing hardware. Such computational tools also give the systems more power to make complex decisions when adapting to new situations or to analyze the data they collect, reducing reliance on a central controller for setup and output processing. Finally, we demonstrate an application of similar types of computations with self-organizing systems to image processing, with an implementation of an image edge detection algorithm.

Contributors

Created

Date Created
  • 2016-12

152500-Thumbnail Image.png

Resource allocation in communication and social networks

Description

As networks are playing an increasingly prominent role in different aspects of our lives, there is a growing awareness that improving their performance is of significant importance. In order to

As networks are playing an increasingly prominent role in different aspects of our lives, there is a growing awareness that improving their performance is of significant importance. In order to enhance performance of networks, it is essential that scarce networking resources be allocated smartly to match the continuously changing network environment. This dissertation focuses on two different kinds of networks - communication and social, and studies resource allocation problems in these networks. The study on communication networks is further divided into different networking technologies - wired and wireless, optical and mobile, airborne and terrestrial. Since nodes in an airborne network (AN) are heterogeneous and mobile, the design of a reliable and robust AN is highly complex. The dissertation studies connectivity and fault-tolerance issues in ANs and proposes algorithms to compute the critical transmission range in fault free, faulty and delay tolerant scenarios. Just as in the case of ANs, power optimization and fault tolerance are important issues in wireless sensor networks (WSN). In a WSN, a tree structure is often used to deliver sensor data to a sink node. In a tree, failure of a node may disconnect the tree. The dissertation investigates the problem of enhancing the fault tolerance capability of data gathering trees in WSN. The advent of OFDM technology provides an opportunity for efficient resource utilization in optical networks and also introduces a set of novel problems, such as routing and spectrum allocation (RSA) problem. This dissertation proves that RSA problem is NP-complete even when the network topology is a chain, and proposes approximation algorithms. In the domain of social networks, the focus of this dissertation is study of influence propagation in presence of active adversaries. In a social network multiple vendors may attempt to influence the nodes in a competitive fashion. This dissertation investigates the scenario where the first vendor has already chosen a set of nodes and the second vendor, with the knowledge of the choice of the first, attempts to identify a smallest set of nodes so that after the influence propagation, the second vendor's market share is larger than the first.

Contributors

Agent

Created

Date Created
  • 2014

152849-Thumbnail Image.png

Infinite cacheflow: a rule-caching solution for software defined networks

Description

New OpenFlow switches support a wide range of network applications, such as firewalls, load balancers, routers, and traffic monitoring. While ternary content addressable memory (TCAM) allows switches to process packets

New OpenFlow switches support a wide range of network applications, such as firewalls, load balancers, routers, and traffic monitoring. While ternary content addressable memory (TCAM) allows switches to process packets at high speed based on multiple header fields, today's commodity switches support just thousands to tens of thousands of forwarding rules. To allow for finer-grained policies on this hardware, efficient ways to support the abstraction of a switch are needed with arbitrarily large rule tables. To do so, a hardware-software hybrid switch is designed that relies on rule caching to provide large rule tables at low cost. Unlike traditional caching solutions, neither individual rules are cached (to respect rule dependencies) nor compressed (to preserve the per-rule traffic counts). Instead long dependency chains are ``spliced'' to cache smaller groups of rules while preserving the semantics of the network policy. The proposed hybrid switch design satisfies three criteria: (1) responsiveness, to allow rapid changes to the cache with minimal effect on traffic throughput; (2) transparency, to faithfully support native OpenFlow semantics; (3) correctness, to cache rules while preserving the semantics of the original policy. The evaluation of the hybrid switch on large rule tables suggest that it can effectively expose the benefits of both hardware and software switches to the controller and to applications running on top of it.

Contributors

Agent

Created

Date Created
  • 2014

151689-Thumbnail Image.png

Structured sparse learning and its applications to biomedical and biological data

Description

Sparsity has become an important modeling tool in areas such as genetics, signal and audio processing, medical image processing, etc. Via the penalization of l-1 norm based regularization, the structured

Sparsity has become an important modeling tool in areas such as genetics, signal and audio processing, medical image processing, etc. Via the penalization of l-1 norm based regularization, the structured sparse learning algorithms can produce highly accurate models while imposing various predefined structures on the data, such as feature groups or graphs. In this thesis, I first propose to solve a sparse learning model with a general group structure, where the predefined groups may overlap with each other. Then, I present three real world applications which can benefit from the group structured sparse learning technique. In the first application, I study the Alzheimer's Disease diagnosis problem using multi-modality neuroimaging data. In this dataset, not every subject has all data sources available, exhibiting an unique and challenging block-wise missing pattern. In the second application, I study the automatic annotation and retrieval of fruit-fly gene expression pattern images. Combined with the spatial information, sparse learning techniques can be used to construct effective representation of the expression images. In the third application, I present a new computational approach to annotate developmental stage for Drosophila embryos in the gene expression images. In addition, it provides a stage score that enables one to more finely annotate each embryo so that they are divided into early and late periods of development within standard stage demarcations. Stage scores help us to illuminate global gene activities and changes much better, and more refined stage annotations improve our ability to better interpret results when expression pattern matches are discovered between genes.

Contributors

Agent

Created

Date Created
  • 2013

151982-Thumbnail Image.png

Security and privacy in heterogeneous wireless and mobile networks: challenges and solutions

Description

The rapid advances in wireless communications and networking have given rise to a number of emerging heterogeneous wireless and mobile networks along with novel networking paradigms, including wireless sensor networks,

The rapid advances in wireless communications and networking have given rise to a number of emerging heterogeneous wireless and mobile networks along with novel networking paradigms, including wireless sensor networks, mobile crowdsourcing, and mobile social networking. While offering promising solutions to a wide range of new applications, their widespread adoption and large-scale deployment are often hindered by people's concerns about the security, user privacy, or both. In this dissertation, we aim to address a number of challenging security and privacy issues in heterogeneous wireless and mobile networks in an attempt to foster their widespread adoption. Our contributions are mainly fivefold. First, we introduce a novel secure and loss-resilient code dissemination scheme for wireless sensor networks deployed in hostile and harsh environments. Second, we devise a novel scheme to enable mobile users to detect any inauthentic or unsound location-based top-k query result returned by an untrusted location-based service providers. Third, we develop a novel verifiable privacy-preserving aggregation scheme for people-centric mobile sensing systems. Fourth, we present a suite of privacy-preserving profile matching protocols for proximity-based mobile social networking, which can support a wide range of matching metrics with different privacy levels. Last, we present a secure combination scheme for crowdsourcing-based cooperative spectrum sensing systems that can enable robust primary user detection even when malicious cognitive radio users constitute the majority.

Contributors

Agent

Created

Date Created
  • 2013

152082-Thumbnail Image.png

Coping with selfish behavior in networks using game theory

Description

While network problems have been addressed using a central administrative domain with a single objective, the devices in most networks are actually not owned by a single entity but by

While network problems have been addressed using a central administrative domain with a single objective, the devices in most networks are actually not owned by a single entity but by many individual entities. These entities make their decisions independently and selfishly, and maybe cooperate with a small group of other entities only when this form of coalition yields a better return. The interaction among multiple independent decision-makers necessitates the use of game theory, including economic notions related to markets and incentives. In this dissertation, we are interested in modeling, analyzing, addressing network problems caused by the selfish behavior of network entities. First, we study how the selfish behavior of network entities affects the system performance while users are competing for limited resource. For this resource allocation domain, we aim to study the selfish routing problem in networks with fair queuing on links, the relay assignment problem in cooperative networks, and the channel allocation problem in wireless networks. Another important aspect of this dissertation is the study of designing efficient mechanisms to incentivize network entities to achieve certain system objective. For this incentive mechanism domain, we aim to motivate wireless devices to serve as relays for cooperative communication, and to recruit smartphones for crowdsourcing. In addition, we apply different game theoretic approaches to problems in security and privacy domain. For this domain, we aim to analyze how a user could defend against a smart jammer, who can quickly learn about the user's transmission power. We also design mechanisms to encourage mobile phone users to participate in location privacy protection, in order to achieve k-anonymity.

Contributors

Agent

Created

Date Created
  • 2013

155389-Thumbnail Image.png

Scaling Up Large-scale Sparse Learning and Its Application to Medical Imaging

Description

Large-scale $\ell_1$-regularized loss minimization problems arise in high-dimensional applications such as compressed sensing and high-dimensional supervised learning, including classification and regression problems. In many applications, it remains challenging to apply

Large-scale $\ell_1$-regularized loss minimization problems arise in high-dimensional applications such as compressed sensing and high-dimensional supervised learning, including classification and regression problems. In many applications, it remains challenging to apply the sparse learning model to large-scale problems that have massive data samples with high-dimensional features. One popular and promising strategy is to scaling up the optimization problem in parallel. Parallel solvers run multiple cores on a shared memory system or a distributed environment to speed up the computation, while the practical usage is limited by the huge dimension in the feature space and synchronization problems.

In this dissertation, I carry out the research along the direction with particular focuses on scaling up the optimization of sparse learning for supervised and unsupervised learning problems. For the supervised learning, I firstly propose an asynchronous parallel solver to optimize the large-scale sparse learning model in a multithreading environment. Moreover, I propose a distributed framework to conduct the learning process when the dataset is distributed stored among different machines. Then the proposed model is further extended to the studies of risk genetic factors for Alzheimer's Disease (AD) among different research institutions, integrating a group feature selection framework to rank the top risk SNPs for AD. For the unsupervised learning problem, I propose a highly efficient solver, termed Stochastic Coordinate Coding (SCC), scaling up the optimization of dictionary learning and sparse coding problems. The common issue for the medical imaging research is that the longitudinal features of patients among different time points are beneficial to study together. To further improve the dictionary learning model, I propose a multi-task dictionary learning method, learning the different task simultaneously and utilizing shared and individual dictionary to encode both consistent and changing imaging features.

Contributors

Agent

Created

Date Created
  • 2017

156648-Thumbnail Image.png

Maximizing Routing Throughput with Applications to Delay Tolerant Networks

Description

Many applications require efficient data routing and dissemination in Delay Tolerant Networks (DTNs) in order to maximize the throughput of data in the network, such as providing healthcare to remote

Many applications require efficient data routing and dissemination in Delay Tolerant Networks (DTNs) in order to maximize the throughput of data in the network, such as providing healthcare to remote communities, and spreading related information in Mobile Social Networks (MSNs). In this thesis, the feasibility of using boats in the Amazon Delta Riverine region as data mule nodes is investigated and a robust data routing algorithm based on a fountain code approach is designed to ensure fast and timely data delivery considering unpredictable boat delays, break-downs, and high transmission failures. Then, the scenario of providing healthcare in Amazon Delta Region is extended to a general All-or-Nothing (Splittable) Multicommodity Flow (ANF) problem and a polynomial time constant approximation algorithm is designed for the maximum throughput routing problem based on a randomized rounding scheme with applications to DTNs. In an MSN, message content is closely related to users’ preferences, and can be used to significantly impact the performance of data dissemination. An interest- and content-based algorithm is developed where the contents of the messages, along with the network structural information are taken into consideration when making message relay decisions in order to maximize data throughput in an MSN. Extensive experiments show the effectiveness of the above proposed data dissemination algorithm by comparing it with state-of-the-art techniques.

Contributors

Agent

Created

Date Created
  • 2018

156963-Thumbnail Image.png

Mining Data with Feature Interactions

Description

Models using feature interactions have been applied successfully in many areas such as biomedical analysis, recommender systems. The popularity of using feature interactions mainly lies in (1) they are able

Models using feature interactions have been applied successfully in many areas such as biomedical analysis, recommender systems. The popularity of using feature interactions mainly lies in (1) they are able to capture the nonlinearity of the data compared with linear effects and (2) they enjoy great interpretability. In this thesis, I propose a series of formulations using feature interactions for real world problems and develop efficient algorithms for solving them.

Specifically, I first propose to directly solve the non-convex formulation of the weak hierarchical Lasso which imposes weak hierarchy on individual features and interactions but can only be approximately solved by a convex relaxation in existing studies. I further propose to use the non-convex weak hierarchical Lasso formulation for hypothesis testing on the interaction features with hierarchical assumptions. Secondly, I propose a type of bi-linear models that take advantage of interactions of features for drug discovery problems where specific drug-drug pairs or drug-disease pairs are of interest. These models are learned by maximizing the number of positive data pairs that rank above the average score of unlabeled data pairs. Then I generalize the method to the case of using the top-ranked unlabeled data pairs for representative construction and derive an efficient algorithm for the extended formulation. Last but not least, motivated by a special form of bi-linear models, I propose a framework that enables simultaneously subgrouping data points and building specific models on the subgroups for learning on massive and heterogeneous datasets. Experiments on synthetic and real datasets are conducted to demonstrate the effectiveness or efficiency of the proposed methods.

Contributors

Agent

Created

Date Created
  • 2018

157375-Thumbnail Image.png

Designing a Software Platform for Evaluating Cyber-Attacks on The Electric PowerGrid

Description

Energy management system (EMS) is at the heart of the operation and control of a modern electrical grid. Because of economic, safety, and security reasons, access to industrial grade EMS

Energy management system (EMS) is at the heart of the operation and control of a modern electrical grid. Because of economic, safety, and security reasons, access to industrial grade EMS and real-world power system data is extremely limited. Therefore, the ability to simulate an EMS is invaluable in researching the EMS in normal and anomalous operating conditions.

I first lay the groundwork for a basic EMS loop simulation in modern power grids and review a class of cybersecurity threats called false data injection (FDI) attacks. Then I propose a software architecture as the basis of software simulation of the EMS loop and explain an actual software platform built using the proposed architecture. I also explain in detail the power analysis libraries used for building the platform with examples and illustrations from the implemented application. Finally, I will use the platform to simulate FDI attacks on two synthetic power system test cases and analyze and visualize the consequences using the capabilities built into the platform.

Contributors

Agent

Created

Date Created
  • 2019