Matching Items (4)

128649-Thumbnail Image.png

Toxic Oligomeric Alpha-Synuclein Variants Present in Human Parkinson’s Disease Brains Are Differentially Generated in Mammalian Cell Models

Description

Misfolding and aggregation of α-synuclein into toxic soluble oligomeric α-synuclein aggregates has been strongly correlated with the pathogenesis of Parkinson’s disease (PD). Here, we show that two different morphologically distinct

Misfolding and aggregation of α-synuclein into toxic soluble oligomeric α-synuclein aggregates has been strongly correlated with the pathogenesis of Parkinson’s disease (PD). Here, we show that two different morphologically distinct oligomeric α-synuclein aggregates are present in human post-mortem PD brain tissue and are responsible for the bulk of α-synuclein induced toxicity in brain homogenates from PD samples. Two antibody fragments that selectively bind the different oligomeric α-synuclein variants block this α-synuclein induced toxicity and are useful tools to probe how various cell models replicate the α-synuclein aggregation pattern of human PD brain. Using these reagents, we show that mammalian cell type strongly influences α-synuclein aggregation, where neuronal cells best replicate the PD brain α-synuclein aggregation profile. Overexpression of α-synuclein in the different cell lines increased protein aggregation but did not alter the morphology of the oligomeric aggregates generated. Differentiation of the neuronal cells into a cholinergic-like or dopaminergic-like phenotype increased the levels of oligomeric α-synuclein where the aggregates were localized in cell neurites and cell bodies.

Contributors

Agent

Created

Date Created
  • 2015-07-22

128456-Thumbnail Image.png

α-synuclein conformational antibodies fused to penetratin are effective in models of Lewy body disease

Description

Objective
Progressive accumulation of α-synuclein (α-syn) has been associated with Parkinson's disease (PD) and Dementia with Lewy body (DLB). The mechanisms through which α-syn leads to neurodegeneration are not completely

Objective
Progressive accumulation of α-synuclein (α-syn) has been associated with Parkinson's disease (PD) and Dementia with Lewy body (DLB). The mechanisms through which α-syn leads to neurodegeneration are not completely clear; however, the formation of various oligomeric species have been proposed to play a role. Antibody therapy has shown effectiveness at reducing α-syn accumulation in the central nervous system (CNS); however, most of these studies have been conducted utilizing antibodies that recognize both monomeric and higher molecular weight α-syn. In this context, the main objective of this study was to investigate the efficacy of immunotherapy with single-chain antibodies (scFVs) against specific conformational forms of α-syn fused to a novel brain penetrating sequence.
Method
We screened various scFVs against α-syn expressed from lentiviral vectors by intracerebral injections in an α-syn tg model. The most effective scFVs were fused to the cell-penetrating peptide penetratin to enhance transport across the blood–brain barrier, and lentiviral vectors were constructed and tested for efficacy following systemic delivery intraperitoneal into α-syn tg mice.
Result
Two scFVs (D5 and 10H) selectively targeted different α-syn oligomers and reduced the accumulation of α-syn and ameliorated functional deficits when delivered late in disease development; however, only one of the antibodies (D5) was also effective when delivered early in disease development. These scFVs were also utilized in an enzyme-linked immunosorbent assay (ELISA) assay to monitor the effects of immunotherapy on α-syn oligomers in brain and plasma.
Interpretation
The design and targeting of antibodies for specific species of α-syn oligomers is crucial for therapeutic immunotherapy and might be of relevance for the treatment of Lewy body disease.

Contributors

Agent

Created

Date Created
  • 2016-06-16

128867-Thumbnail Image.png

Generation of Influenza Virus from Avian Cells Infected by Salmonella Carrying the Viral Genome

Description

Domestic poultry serve as intermediates for transmission of influenza A virus from the wild aquatic bird reservoir to humans, resulting in influenza outbreaks in poultry and potential epidemics/pandemics among human

Domestic poultry serve as intermediates for transmission of influenza A virus from the wild aquatic bird reservoir to humans, resulting in influenza outbreaks in poultry and potential epidemics/pandemics among human beings. To combat emerging avian influenza virus, an inexpensive, heat-stable, and orally administered influenza vaccine would be useful to vaccinate large commercial poultry flocks and even migratory birds. Our hypothesized vaccine is a recombinant attenuated bacterial strain able to mediate production of attenuated influenza virus in vivo to induce protective immunity against influenza. Here we report the feasibility and technical limitations toward such an ideal vaccine based on our exploratory study. Five 8-unit plasmids carrying a chloramphenicol resistance gene or free of an antibiotic resistance marker were constructed. Influenza virus was successfully generated in avian cells transfected by each of the plasmids. The Salmonella carrier was engineered to allow stable maintenance and conditional release of the 8-unit plasmid into the avian cells for recovery of influenza virus. Influenza A virus up to 10[superscript 7] 50% tissue culture infective doses (TCID[subscript 50])/ml were recovered from 11 out of 26 co-cultures of chicken embryonic fibroblasts (CEF) and Madin-Darby canine kidney (MDCK) cells upon infection by the recombinant Salmonella carrying the 8-unit plasmid. Our data prove that a bacterial carrier can mediate generation of influenza virus by delivering its DNA cargoes into permissive host cells. Although we have made progress in developing this Salmonella influenza virus vaccine delivery system, further improvements are necessary to achieve efficient virus production, especially in vivo.

Contributors

Agent

Created

Date Created
  • 2015-03-05

151602-Thumbnail Image.png

Detecting oligomeric beta-amyloid for the diagnosis of Alzheimer's disease

Description

Alzheimer's disease (AD) is the leading neurodegenerative disease, affecting roughly 8% of people 65 years of age or older. There exists an imperative need to develop a non-invasive test for

Alzheimer's disease (AD) is the leading neurodegenerative disease, affecting roughly 8% of people 65 years of age or older. There exists an imperative need to develop a non-invasive test for the earlier detection of AD. The use of biomarkers is a promising option that examines the toxic mechanisms and metabolic pathways that cause Alzheimer's disease, eventually leading to an early diagnostic method. This thesis presents the use of oligomeric beta-amyloid as a biomarker to detect Alzheimer's disease via a specialized enzyme-linked protein assay. Specifically, this paper details the optimization and development of a novel phage capture enzyme-linked immunosorbent assay (ELISA) that can detect the relative quantity of beta-amyloid oligomers in samples from a mouse model of AD. The objective of this thesis was to optimize a phage capture ELISA using the A4 single-chain variable fragment (scFv) to quantify the amount of beta-amyloid oligomers in various mice samples. A4 selectively recognizes a toxic oligomeric form of beta-amyloid. The level of A4-reactive oligomeric beta-amyloid was measured in triplicate in homogenized mouse brain tissue samples from eight transgenic (TG) and eight nontransgenic (NTG) animals aged five, nine, and thirteen months. There was a significant difference (p < 0.0005) between the five month TG and NTG mice. A decrease in beta-amyloid levels with the aging of the TG mice suggested that the beta-amyloid oligomers may be aggregating to form beta-amyloid fibrils. Conversely, the quantity of beta-amyloid increased with the aging of the NTG mice. This indicated that beta-amyloid oligomers may develop with normal aging.

Contributors

Agent

Created

Date Created
  • 2013