Matching Items (45)
157471-Thumbnail Image.png
Description
Large-scale blackouts that have occurred across North America in the past few decades have paved the path for substantial amount of research in the field of security assessment of the grid. With the aid of advanced technology such as phasor measurement units (PMUs), considerable work has been done involving voltage

Large-scale blackouts that have occurred across North America in the past few decades have paved the path for substantial amount of research in the field of security assessment of the grid. With the aid of advanced technology such as phasor measurement units (PMUs), considerable work has been done involving voltage stability analysis and power system dynamic behavior analysis to ensure security and reliability of the grid. Online dynamic security assessment (DSA) analysis has been developed and applied in several power system control centers. Existing applications of DSA are limited by the assumption of simplistic load profiles, which often considers a normative day to represent an entire year. To overcome these aforementioned challenges, this research developed a novel DSA scheme to provide security prediction in real-time for load profiles corresponding to different seasons. The major contributions of this research are to (1) develop a DSA scheme incorporated with PMU data, (2) consider a comprehensive seasonal load profile, (3) account for varying penetrations of renewable generation, and (4) compare the accuracy of different machine learning (ML) algorithms for DSA. The ML algorithms that will be the focus of this study include decision trees (DTs), support vector machines (SVMs), random forests (RFs), and multilayer neural networks (MLNNs).

This thesis describes the development of a novel DSA scheme using synchrophasor measurements that accounts for the load variability occurring across different seasons in a year. Different amounts of solar generation have also been incorporated in this study to account for increasing percentage of renewables in the modern grid. To account for the security of the operating conditions different ML algorithms have been trained and tested. A database of cases for different operating conditions has been developed offline that contains secure as well as insecure cases, and the ML models have been trained to classify the security or insecurity of a particular operating condition in real-time. Multiple scenarios are generated every 15 minutes for different seasons and stored in the database. The performance of this approach is tested on the IEEE-118 bus system.
ContributorsNATH, ANUBHAV (Author) / Pal, Anamitra (Thesis advisor) / Holbert, Keith (Committee member) / Wu, Meng (Committee member) / Arizona State University (Publisher)
Created2019
156635-Thumbnail Image.png
Description
Recently, a novel non-iterative power flow (PF) method known as the Holomorphic Embedding Method (HEM) was applied to the power-flow problem. Its superiority over other traditional iterative methods such as Gauss-Seidel (GS), Newton-Raphson (NR), Fast Decoupled Load Flow (FDLF) and their variants is that it is theoretically guaranteed to find

Recently, a novel non-iterative power flow (PF) method known as the Holomorphic Embedding Method (HEM) was applied to the power-flow problem. Its superiority over other traditional iterative methods such as Gauss-Seidel (GS), Newton-Raphson (NR), Fast Decoupled Load Flow (FDLF) and their variants is that it is theoretically guaranteed to find the operable solution, if one exists, and will unequivocally signal if no solution exists. However, while theoretical convergence is guaranteed by Stahl’s theorem, numerical convergence is not. Numerically, the HEM may require extended precision to converge, especially for heavily-loaded and ill-conditioned power system models.

In light of the advantages and disadvantages of the HEM, this report focuses on three topics:

1. Exploring the effect of double and extended precision on the performance of HEM,

2. Investigating the performance of different embedding formulations of HEM, and

3. Estimating the saddle-node bifurcation point (SNBP) from HEM-based Thévenin-like networks using pseudo-measurements.

The HEM algorithm consists of three distinct procedures that might accumulate roundoff error and cause precision loss during the calculations: the matrix equation solution calculation, the power series inversion calculation and the Padé approximant calculation. Numerical experiments have been performed to investigate which aspect of the HEM algorithm causes the most precision loss and needs extended precision. It is shown that extended precision must be used for the entire algorithm to improve numerical performance.

A comparison of two common embedding formulations, a scalable formulation and a non-scalable formulation, is conducted and it is shown that these two formulations could have extremely different numerical properties on some power systems.

The application of HEM to the SNBP estimation using local-measurements is explored. The maximum power transfer theorem (MPTT) obtained for nonlinear Thévenin-like networks is validated with high precision. Different numerical methods based on MPTT are investigated. Numerical results show that the MPTT method works reasonably well for weak buses in the system. The roots method, as an alternative, is also studied. It is shown to be less effective than the MPTT method but the roots of the Padé approximant can be used as a research tool for determining the effects of noisy measurements on the accuracy of SNBP prediction.
ContributorsLi, Qirui (Author) / Tylavsky, Daniel (Thesis advisor) / Lei, Qin (Committee member) / Weng, Yang (Committee member) / Arizona State University (Publisher)
Created2018
156714-Thumbnail Image.png
Description
Alternative sources of power generation interconnected at the transmission level have witnessed an increase in investment in the last few years. On the other hand, when the power systems are being operated close to their limits, power system operators and engineers face the challenge of ensuring a safe and reliable

Alternative sources of power generation interconnected at the transmission level have witnessed an increase in investment in the last few years. On the other hand, when the power systems are being operated close to their limits, power system operators and engineers face the challenge of ensuring a safe and reliable supply of electricity. In such a scenario, the reliability of the transmission system is crucial as it ensures secure transfer of uninterrupted power from the generating sources to the load centers. This thesis is aimed at ensuring the reliability of the transmission system from two perspectives. First, this work monitors power system disturbances such as unintentional islanding to ensure prompt detection and implementation of restorative actions and thus, minimizes the extent of damage. Secondly, it investigates power system disturbances such as transmission line outages through reliability evaluation and outage analysis in order to prevent reoccurrence of similar failures.

In this thesis, a passive Wide Area Measurement System (WAMS) based islanding detection scheme called Cumulative Sum of Change in Voltage Phase Angle Difference (CUSPAD) is proposed and tested on a modified 18 bus test system and a modified IEEE 118 bus system with various wind energy penetration levels. Comparative analysis between accuracies of the proposed approach and the conventional relative angle difference approach in presence of measurement errors indicate a superior performance of the former. Results obtained from the proposed approach also reveal that power system disturbances such as unintentional island formations are accurately detected in wind integrated transmission systems.

Quantitative evaluation of the transmission system reliability aids in the assessment of the existing system performance. Further, post-mortem analysis of failures is an important step in minimizing recurrent failures. Reliability evaluation and outage analysis of transmission line outages carried out in this thesis have revealed chronological trends in the system performance. A new index called Outage Impact Index (OII) is also been proposed which can identify and prioritize outages based on their severity. This would serve as a baselining index for assessing and monitoring future transmission system performances and will facilitate implementation of reliability improvement measures if found necessary.
ContributorsBarkakati, Meghna (Author) / Pal, Anamitra (Thesis advisor) / Holbert, Keith E. (Committee member) / Weng, Yang (Committee member) / Arizona State University (Publisher)
Created2018
156752-Thumbnail Image.png
Description
Distributed energy resources have experienced dramatic growth and are beginning to support a significant amount of customer loads. Power electronic converters are the primary interface between the grid and the distributed energy resources/storage and offer several advantages including fast control, flexibility and high efficiency. The efficiency and the power density

Distributed energy resources have experienced dramatic growth and are beginning to support a significant amount of customer loads. Power electronic converters are the primary interface between the grid and the distributed energy resources/storage and offer several advantages including fast control, flexibility and high efficiency. The efficiency and the power density by volume are important performance metrics of a power converter. Compact and high efficiency power converter is beneficial to the cost-effectiveness of the converter interfaced generations. In this thesis, a soft-switching technique is proposed to reduce the size of passive components in a grid-connected converter while maintaining a high power conversion efficiency. The dynamic impact of the grid-connected converters on the power system is causing concerns as the penetration level of the converter interfaced generation increases, necessitating a detailed dynamic analysis. The unbalanced nature of distribution systems makes the conventional transient stability simulation based on positive sequence components unsuitable for this purpose. Methods suitable for the dynamic simulation of grid-connected converters in large scale unbalanced and single-phase systems are presented in this thesis to provide an effective way to study the dynamic interactions between the grid and the converters. Dynamic-link library (DLL) of converter dynamic models are developed by which converter dynamic simulations can be easily conducted in OpenDSS. To extend the converter controls testing beyond pure simulation, real-time simulation can be utilized where partial realistic scenarios can be created by including realistic components in the simulation loop. In this work, a multi-platform, real-time simulation testbed including actual digital controller platforms, communication networks and inverters has been developed for validating the microgrid concepts and implementations. A hierarchical converted based microgrid control scheme is proposed which enables the islanded microgrid operation with 100% penetration level of converter interfaced generation. Impact of the load side dynamic modeling on the converter response is also discussed in this thesis.
ContributorsYu, Ziwei (Author) / Ayyanar, Raja (Thesis advisor) / Vittal, Vijay (Committee member) / Qin, Jiangchao (Committee member) / Weng, Yang (Committee member) / Arizona State University (Publisher)
Created2018
156913-Thumbnail Image.png
Description
With the increasing penetration of converter interfaced renewable generation into power systems, the structure and behavior of the power system is changing, catalyzing alterations and enhancements in modeling and simulation methods.

This work puts forth a Hybrid Electromagnetic Transient-Transient Stability simulation method implemented using MATLAB and Simulink, to study power electronic

With the increasing penetration of converter interfaced renewable generation into power systems, the structure and behavior of the power system is changing, catalyzing alterations and enhancements in modeling and simulation methods.

This work puts forth a Hybrid Electromagnetic Transient-Transient Stability simulation method implemented using MATLAB and Simulink, to study power electronic based power systems. Hybrid Simulation enables detailed, accurate modeling, along with fast, efficient simulation, on account of the Electromagnetic Transient (EMT) and Transient Stability (TS) simulations respectively. A critical component of hybrid simulation is the interaction between the EMT and TS simulators, established through a well-defined interface technique, which has been explored in detail.

This research focuses on the boundary conditions and interaction between the two simulation models for optimum accuracy and computational efficiency.

A case study has been carried out employing the proposed hybrid simulation method. The test case used is the IEEE 9-bus system, modified to integrate it with a solar PV plant. The validation of the hybrid model with the benchmark full EMT model, along with the analysis of the accuracy and efficiency, has been performed. The steady-state and transient analysis results demonstrate that the performance of the hybrid simulation method is competent. The hybrid simulation technique suitably captures accuracy of EMT simulation and efficiency of TS simulation, therefore adequately representing the behavior of power systems with high penetration of converter interfaced generation.
ContributorsAthaide, Denise Maria Christine (Author) / Qin, Jiangchao (Thesis advisor) / Ayyanar, Raja (Committee member) / Wu, Meng (Committee member) / Arizona State University (Publisher)
Created2018
156846-Thumbnail Image.png
Description
Nowadays, the widespread introduction of distributed generators (DGs) brings great challenges to the design, planning, and reliable operation of the power system. Therefore, assessing the capability of a distribution network to accommodate renewable power generations is urgent and necessary. In this respect, the concept of hosting capacity (HC) is generally

Nowadays, the widespread introduction of distributed generators (DGs) brings great challenges to the design, planning, and reliable operation of the power system. Therefore, assessing the capability of a distribution network to accommodate renewable power generations is urgent and necessary. In this respect, the concept of hosting capacity (HC) is generally accepted by engineers to evaluate the reliability and sustainability of the system with high penetration of DGs. For HC calculation, existing research provides simulation-based methods which are not able to find global optimal. Others use OPF (optimal power flow) based methods where

too many constraints prevent them from obtaining the solution exactly. They also can not get global optimal solution. Due to this situation, I proposed a new methodology to overcome the shortcomings. First, I start with an optimization problem formulation and provide a flexible objective function to satisfy different requirements. Power flow equations are the basic rule and I transfer them from the commonly used polar coordinate to the rectangular coordinate. Due to the operation criteria, several constraints are

incrementally added. I aim to preserve convexity as much as possible so that I can obtain optimal solution. Second, I provide the geometric view of the convex problem model. The process to find global optimal can be visualized clearly. Then, I implement segmental optimization tool to speed up the computation. A large network is able to be divided into segments and calculated in parallel computing where the results stay the same. Finally, the robustness of my methodology is demonstrated by doing extensive simulations regarding IEEE distribution networks (e.g. 8-bus, 16-bus, 32-bus, 64-bus, 128-bus). Thus, it shows that the proposed method is verified to calculate accurate hosting capacity and ensure to get global optimal solution.
ContributorsYuan, Jingyi (Author) / Weng, Yang (Thesis advisor) / Lei, Qin (Committee member) / Khorsand, Mojdeh (Committee member) / Arizona State University (Publisher)
Created2018
157154-Thumbnail Image.png
Description
Over the years, the growing penetration of renewable energy into the electricity market has resulted in a significant change in the electricity market price. This change makes the existing forecasting method prone to error, decreasing the economic benefits. Hence, more precise forecasting methods need to be developed. This paper starts

Over the years, the growing penetration of renewable energy into the electricity market has resulted in a significant change in the electricity market price. This change makes the existing forecasting method prone to error, decreasing the economic benefits. Hence, more precise forecasting methods need to be developed. This paper starts with a survey and benchmark of existing machine learning approaches for forecasting the real-time market (RTM) price. While these methods provide sufficient modeling capability via supervised learning, their accuracy is still limited due to the single data source, e.g., historical price information only. In this paper, a novel two-stage supervised learning approach is proposed by diversifying the data sources such as highly correlated power data. This idea is inspired by the recent load forecasting methods that have shown extremely well performances. Specifically, the proposed two-stage method, namely the rerouted method, learns two types of mapping rules. The first one is the mapping between the historical wind power and the historical price. The second is the forecasting rule for wind generation. Based on the two rules, we forecast the price via the forecasted generation and the first learned mapping between power and price. Additionally, we observed that it is not the more training data the better, leading to our validation steps to quantify the best training intervals for different datasets. We conduct comparisons of numerical results between existing methods and the proposed methods based on datasets from the Electric Reliability Council of Texas (ERCOT). For each machine learning step, we examine different learning methods, such as polynomial regression, support vector regression, neural network, and deep neural network. The results show that the proposed method is significantly better than existing approaches when renewables are involved.
ContributorsLuo, Shuman (Author) / Weng, Yang (Thesis advisor) / Lei, Qin (Committee member) / Qin, Jiangchao (Committee member) / Arizona State University (Publisher)
Created2019
157073-Thumbnail Image.png
Description
High Voltage Direct Current (HVDC) Technology has several features that make it particularly attractive for specific transmission applications. Recent years have witnessed an unprecedented growth in the number of the HVDC projects, which demonstrates a heightened interest in the HVDC technology. In parallel, the use of renewable energy sources has

High Voltage Direct Current (HVDC) Technology has several features that make it particularly attractive for specific transmission applications. Recent years have witnessed an unprecedented growth in the number of the HVDC projects, which demonstrates a heightened interest in the HVDC technology. In parallel, the use of renewable energy sources has dramatically increased. For instance, Kuwait has recently announced a renewable project to be completed in 2035; this project aims to produce 15% of the countrys energy consumption from renewable sources. However, facilities that use renewable sources, such as solar and wind, to provide clean energy, are mostly placed in remote areas, as their installation requires a massive space of free land. Consequently, considerable challenges arise in terms of transmitting power generated from renewable sources of energy in remote areas to urban areas for further consumption.

The present thesis investigates different transmission line systems for transmitting bulk energy from renewable sources. Specifically, two systems will be focused on: the high-voltage alternating current (HVAC) system and the high-voltage direct current (HVDC) system. In order to determine the most efficient way of transmitting bulk energy from renewable sources, different aspects of the aforementioned two types of systems are analyzed. Limitations inherent in both HVAC and HVDC systems have been discussed.

At present, artificial intelligence plays an important role in power system control and monitoring. Consequently, in this thesis, the fault issue has been analyzed in transmission systems, with a specific consideration of machine learning tools that can help monitor transmission systems by detecting fault locations. These tools, called models, are used to analyze the collected data. In the present thesis, a focus on such models as linear regression (LR), K-nearest neighbors (KNN), linear support vector machine (LSVM) , and adaptive boost (AdaBoost). Finally, the accuracy of each model is evaluated and discussed. The machine learning concept introduced in the present thesis lays down the foundation for future research in this area so that to enable further research on the efficient ways to improve the performance of transmission line components and power systems.
ContributorsAlbannai, Bassam Ahmad (Author) / Weng, Yang (Thesis advisor) / Wu, Meng (Committee member) / Dahal, Som (Committee member) / Arizona State University (Publisher)
Created2019
156936-Thumbnail Image.png
Description
In recent years, conventional convolutional neural network (CNN) has achieved outstanding performance in image and speech processing applications. Unfortunately, the pooling operation in CNN ignores important spatial information which is an important attribute in many applications. The recently proposed capsule network retains spatial information and improves the capabilities of traditional

In recent years, conventional convolutional neural network (CNN) has achieved outstanding performance in image and speech processing applications. Unfortunately, the pooling operation in CNN ignores important spatial information which is an important attribute in many applications. The recently proposed capsule network retains spatial information and improves the capabilities of traditional CNN. It uses capsules to describe features in multiple dimensions and dynamic routing to increase the statistical stability of the network.

In this work, we first use capsule network for overlapping digit recognition problem. We evaluate the performance of the network with respect to recognition accuracy, convergence and training time per epoch. We show that capsule network achieves higher accuracy when training set size is small. When training set size is larger, capsule network and conventional CNN have comparable recognition accuracy. The training time per epoch for capsule network is longer than conventional CNN because of the dynamic routing algorithm. An analysis of the GPU timing shows that adjusting the capsule structure can help decrease the time complexity of the dynamic routing algorithm significantly.

Next, we design a capsule network for speech recognition, specifically, overlapping word recognition. We use both capsule network and conventional CNN to recognize 2 overlapping words in speech files created from 5 word classes. We show that capsule network achieves a considerably higher recognition accuracy (96.92%) compared to conventional CNN (85.19%). Our results show that capsule network recognizes overlapping word by recognizing each individual word in the speech. We also verify the scalability of capsule network by increasing the number of word classes from 5 to 10. Capsule network still shows a high recognition accuracy of 95.42% in case of 10 words while the accuracy of conventional CNN decreases sharply to 73.18%.
ContributorsXiong, Yan (Author) / Chakrabarti, Chaitali (Thesis advisor) / Berisha, Visar (Thesis advisor) / Weng, Yang (Committee member) / Arizona State University (Publisher)
Created2018
Description

As more electric vehicles (EVs) are adopted, users need a solution to meet their expectations when it comes to Level 2 EV Charging (EVC). Currently, Adaptive Charging (AC) Techniques are used in multi-unit, public, settings. In the future, AC should be utilized to provide an optimized charging experience for the

As more electric vehicles (EVs) are adopted, users need a solution to meet their expectations when it comes to Level 2 EV Charging (EVC). Currently, Adaptive Charging (AC) Techniques are used in multi-unit, public, settings. In the future, AC should be utilized to provide an optimized charging experience for the EV user in a single-unit residential application. In this experiment, an Electric Vehicle simulation tool was created using Python. A training dataset was generated from Alternative Fuels and Data Center (EVI-Pro) using charging data from Phoenix, Arizona. Similarly, the utility price plan chosen for this exercise was SRP Electric Vehicle Price plan. This will be the cost-basis for the thesis. There were four cases that were evaluated by the simulation tool. (1) Utility Guided Scheduling (2) Automatic Scheduling (3) Off-Site Enablement (4) Bidirectional enablement. These use-cases are some of the critical problems facing EV users when it comes to charging at home. Each of these scenarios and algorithms were proven to save the user money in their daily bill. Overall, the user will need some sort of weighted scenario that considers all four cases to provide the best solution to the user. All four scenarios support the use of Adaptive Charging techniques in residential level 2 electric vehicle chargers. By applying these techniques, the user can save up to 90% on their energy bill while offsetting the energy grid during peak hours. The adaptive charging techniques applied in this thesis are critical to the adoption of the next generation electric vehicles. Users need to be enabled to use the latest and greatest technology. In the future, individuals can use this report as a baseline to use an Artificial Intelligence model to make an educated case-by-case decision to deal with the variability of the data.

ContributorsSnyder, Jack (Author) / Wu, Meng (Thesis director) / Walsh, Stephanie (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2023-05